Abigail R Bradshaw, Daniel R Lametti, Douglas M Shiller, Kyle Jasmin, Ruiling Huang, Carolyn McGettigan
{"title":"同步和节拍器定时语音中的语音运动适应。","authors":"Abigail R Bradshaw, Daniel R Lametti, Douglas M Shiller, Kyle Jasmin, Ruiling Huang, Carolyn McGettigan","doi":"10.1037/xge0001459","DOIUrl":null,"url":null,"abstract":"<p><p>Sensorimotor integration during speech has been investigated by altering the sound of a speaker's voice in real time; in response, the speaker learns to change their production of speech sounds in order to compensate (adaptation). This line of research has however been predominantly limited to very simple speaking contexts, typically involving (a) repetitive production of single words and (b) production of speech while alone, without the usual exposure to other voices. This study investigated adaptation to a real-time perturbation of the first and second formants during production of sentences either in synchrony with a prerecorded voice (synchronous speech group) or alone (solo speech group). Experiment 1 (<i>n</i> = 30) found no significant difference in the average magnitude of compensatory formant changes between the groups; however, synchronous speech resulted in increased between-individual variability in such formant changes. Participants also showed acoustic-phonetic convergence to the voice they were synchronizing with prior to introduction of the feedback alteration. Furthermore, the extent to which the changes required for convergence agreed with those required for adaptation was positively correlated with the magnitude of subsequent adaptation. Experiment 2 tested an additional group with a metronome-timed speech task (<i>n</i> = 15) and found a similar pattern of increased between-participant variability in formant changes. These findings demonstrate that speech motor adaptation can be measured robustly at the group level during performance of more complex speaking tasks; however, further work is needed to resolve whether self-voice adaptation and other-voice convergence reflect additive or interactive effects during sensorimotor control of speech. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":15698,"journal":{"name":"Journal of Experimental Psychology: General","volume":" ","pages":"3476-3489"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech motor adaptation during synchronous and metronome-timed speech.\",\"authors\":\"Abigail R Bradshaw, Daniel R Lametti, Douglas M Shiller, Kyle Jasmin, Ruiling Huang, Carolyn McGettigan\",\"doi\":\"10.1037/xge0001459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sensorimotor integration during speech has been investigated by altering the sound of a speaker's voice in real time; in response, the speaker learns to change their production of speech sounds in order to compensate (adaptation). This line of research has however been predominantly limited to very simple speaking contexts, typically involving (a) repetitive production of single words and (b) production of speech while alone, without the usual exposure to other voices. This study investigated adaptation to a real-time perturbation of the first and second formants during production of sentences either in synchrony with a prerecorded voice (synchronous speech group) or alone (solo speech group). Experiment 1 (<i>n</i> = 30) found no significant difference in the average magnitude of compensatory formant changes between the groups; however, synchronous speech resulted in increased between-individual variability in such formant changes. Participants also showed acoustic-phonetic convergence to the voice they were synchronizing with prior to introduction of the feedback alteration. Furthermore, the extent to which the changes required for convergence agreed with those required for adaptation was positively correlated with the magnitude of subsequent adaptation. Experiment 2 tested an additional group with a metronome-timed speech task (<i>n</i> = 15) and found a similar pattern of increased between-participant variability in formant changes. These findings demonstrate that speech motor adaptation can be measured robustly at the group level during performance of more complex speaking tasks; however, further work is needed to resolve whether self-voice adaptation and other-voice convergence reflect additive or interactive effects during sensorimotor control of speech. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":15698,\"journal\":{\"name\":\"Journal of Experimental Psychology: General\",\"volume\":\" \",\"pages\":\"3476-3489\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Psychology: General\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/xge0001459\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology: General","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xge0001459","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Speech motor adaptation during synchronous and metronome-timed speech.
Sensorimotor integration during speech has been investigated by altering the sound of a speaker's voice in real time; in response, the speaker learns to change their production of speech sounds in order to compensate (adaptation). This line of research has however been predominantly limited to very simple speaking contexts, typically involving (a) repetitive production of single words and (b) production of speech while alone, without the usual exposure to other voices. This study investigated adaptation to a real-time perturbation of the first and second formants during production of sentences either in synchrony with a prerecorded voice (synchronous speech group) or alone (solo speech group). Experiment 1 (n = 30) found no significant difference in the average magnitude of compensatory formant changes between the groups; however, synchronous speech resulted in increased between-individual variability in such formant changes. Participants also showed acoustic-phonetic convergence to the voice they were synchronizing with prior to introduction of the feedback alteration. Furthermore, the extent to which the changes required for convergence agreed with those required for adaptation was positively correlated with the magnitude of subsequent adaptation. Experiment 2 tested an additional group with a metronome-timed speech task (n = 15) and found a similar pattern of increased between-participant variability in formant changes. These findings demonstrate that speech motor adaptation can be measured robustly at the group level during performance of more complex speaking tasks; however, further work is needed to resolve whether self-voice adaptation and other-voice convergence reflect additive or interactive effects during sensorimotor control of speech. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
The Journal of Experimental Psychology: General publishes articles describing empirical work that bridges the traditional interests of two or more communities of psychology. The work may touch on issues dealt with in JEP: Learning, Memory, and Cognition, JEP: Human Perception and Performance, JEP: Animal Behavior Processes, or JEP: Applied, but may also concern issues in other subdisciplines of psychology, including social processes, developmental processes, psychopathology, neuroscience, or computational modeling. Articles in JEP: General may be longer than the usual journal publication if necessary, but shorter articles that bridge subdisciplines will also be considered.