Zeang Wu, Mei Zhang, Yuhong Deng, Guangyuan Zhou, Meng Yang, Haixia Wang
{"title":"菊粉诱导的肠道微生物组和代谢的改变与肥胖雌性小鼠体重减轻有关。","authors":"Zeang Wu, Mei Zhang, Yuhong Deng, Guangyuan Zhou, Meng Yang, Haixia Wang","doi":"10.1080/09637486.2023.2235901","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous work revealed the microbiota-dependent beneficial effects of inulin in obese male mice, but the effects in obese female mice were not determined. High-fat diet (HFD)-induced obese female mice were switched to normal diets and gavaged with normal saline or inulin for 10 weeks. Inulin supplementation significantly accelerated weight loss and reversed HFD-induced gut microbiota dysbiosis in obese female mice, and also reduced the ratio of Firmicutes/Bacteroidetes and enriched the abundance of <i>norank_f_Muribaculaceae</i> and <i>Alistipes</i>. In addition, 52 key serum metabolites were distinctly altered after inulin supplementation. Among them, andrographolide and monoacylglycerols (18:4) increased more than 9-fold and 14-fold, respectively, while phosphatidylcholine (PC) (18:1e/2:0), PC (20:1/20:2) and PC (19:1/19:1) decreased. In conclusion, gut microbiota and metabolites were closely associated with the beneficial effects of inulin in accelerating weight loss in obese female mice.</p>","PeriodicalId":14087,"journal":{"name":"International Journal of Food Sciences and Nutrition","volume":"74 5","pages":"606-620"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations of gut microbiome and metabolism induced by inulin associated with weight loss in obese female mice.\",\"authors\":\"Zeang Wu, Mei Zhang, Yuhong Deng, Guangyuan Zhou, Meng Yang, Haixia Wang\",\"doi\":\"10.1080/09637486.2023.2235901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our previous work revealed the microbiota-dependent beneficial effects of inulin in obese male mice, but the effects in obese female mice were not determined. High-fat diet (HFD)-induced obese female mice were switched to normal diets and gavaged with normal saline or inulin for 10 weeks. Inulin supplementation significantly accelerated weight loss and reversed HFD-induced gut microbiota dysbiosis in obese female mice, and also reduced the ratio of Firmicutes/Bacteroidetes and enriched the abundance of <i>norank_f_Muribaculaceae</i> and <i>Alistipes</i>. In addition, 52 key serum metabolites were distinctly altered after inulin supplementation. Among them, andrographolide and monoacylglycerols (18:4) increased more than 9-fold and 14-fold, respectively, while phosphatidylcholine (PC) (18:1e/2:0), PC (20:1/20:2) and PC (19:1/19:1) decreased. In conclusion, gut microbiota and metabolites were closely associated with the beneficial effects of inulin in accelerating weight loss in obese female mice.</p>\",\"PeriodicalId\":14087,\"journal\":{\"name\":\"International Journal of Food Sciences and Nutrition\",\"volume\":\"74 5\",\"pages\":\"606-620\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Sciences and Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/09637486.2023.2235901\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Sciences and Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09637486.2023.2235901","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Alterations of gut microbiome and metabolism induced by inulin associated with weight loss in obese female mice.
Our previous work revealed the microbiota-dependent beneficial effects of inulin in obese male mice, but the effects in obese female mice were not determined. High-fat diet (HFD)-induced obese female mice were switched to normal diets and gavaged with normal saline or inulin for 10 weeks. Inulin supplementation significantly accelerated weight loss and reversed HFD-induced gut microbiota dysbiosis in obese female mice, and also reduced the ratio of Firmicutes/Bacteroidetes and enriched the abundance of norank_f_Muribaculaceae and Alistipes. In addition, 52 key serum metabolites were distinctly altered after inulin supplementation. Among them, andrographolide and monoacylglycerols (18:4) increased more than 9-fold and 14-fold, respectively, while phosphatidylcholine (PC) (18:1e/2:0), PC (20:1/20:2) and PC (19:1/19:1) decreased. In conclusion, gut microbiota and metabolites were closely associated with the beneficial effects of inulin in accelerating weight loss in obese female mice.
期刊介绍:
The primary aim of International Journal of Food Sciences and Nutrition is to integrate food science with nutrition. Improvement of knowledge in human nutrition should always be the final objective of submitted research. It''s an international, peer-reviewed journal which publishes high quality, original research contributions to scientific knowledge. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.