[用于计算机辅助白血病诊断的人工智能]。

IF 0.6 4区 医学 Q3 MEDICINE, GENERAL & INTERNAL Deutsche Medizinische Wochenschrift Pub Date : 2023-09-01 Epub Date: 2023-08-23 DOI:10.1055/a-1965-7044
Christian Matek, Carsten Marr, Michael von Bergwelt-Baildon, Karsten Spiekermann
{"title":"[用于计算机辅助白血病诊断的人工智能]。","authors":"Christian Matek,&nbsp;Carsten Marr,&nbsp;Michael von Bergwelt-Baildon,&nbsp;Karsten Spiekermann","doi":"10.1055/a-1965-7044","DOIUrl":null,"url":null,"abstract":"<p><p>The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using \"explainable AI\" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.</p>","PeriodicalId":11370,"journal":{"name":"Deutsche Medizinische Wochenschrift","volume":"148 17","pages":"1108-1112"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Artificial Intelligence for computer-aided leukemia diagnostics].\",\"authors\":\"Christian Matek,&nbsp;Carsten Marr,&nbsp;Michael von Bergwelt-Baildon,&nbsp;Karsten Spiekermann\",\"doi\":\"10.1055/a-1965-7044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using \\\"explainable AI\\\" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.</p>\",\"PeriodicalId\":11370,\"journal\":{\"name\":\"Deutsche Medizinische Wochenschrift\",\"volume\":\"148 17\",\"pages\":\"1108-1112\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deutsche Medizinische Wochenschrift\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1965-7044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsche Medizinische Wochenschrift","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1965-7044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

白血病患者的血液和骨髓标本的手动检查是耗时的,并且受到观察者内部和观察者之间差异的限制。白血病诊断人工智能算法的开发需要高质量的样本数字化和大数据集的可靠注释。使用这些数据集的基于深度学习的算法在一些定义明确的临床相关问题(如细胞的爆炸特性)上达到了人类水平的性能。像多实例学习这样的方法可以从白细胞的集合中预测诊断,但数据更密集。使用“可解释的人工智能”方法可以使预测过程更加透明,并允许用户验证算法的预测。稳定性和稳健性分析对于这些算法的日常应用是必要的,监管机构正在为此制定标准。集成诊断将不同的诊断模式联系起来,有望提供更高的准确性,但需要更广泛和多样化的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Artificial Intelligence for computer-aided leukemia diagnostics].

The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using "explainable AI" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Deutsche Medizinische Wochenschrift
Deutsche Medizinische Wochenschrift 医学-医学:内科
CiteScore
0.80
自引率
0.00%
发文量
432
审稿时长
3-6 weeks
期刊介绍: Ein Schwerpunktthema - verschiedene Perspektiven Mit vielen praktischen Tipps und konkreten Handlungsanweisungen. Kurz und prägnant: Aktuell informiert Interessante Nachrichten für Sie zusammengefasst und von Experten kommentiert. Fundiertes Fachwissen - für Einsteiger und Profis Ein bunter Mix aus Übersichten, Fallbeispielen, Kasuistiken und Schritt-für-Schritt-Anleitungen. Blick über den Tellerrand Erweitern Sie Ihren Fokus über das reine Fachwissen hinaus mit "Medizin im Kontext".
期刊最新文献
A prefrontal motor circuit initiates persistent movement. Clinical, Radiographic, and Tumor Characteristics of Solitary Intra-Osseous Neurofibroma of Jaws- A Systematic Review. Giant Cell Arteritis Masquerading as Orbital Inflammatory Disease. Nephrologie: Leichte eGFR-Reduktion als Risikofaktor bei jungen Erwachsenen? Auch „Weekend Warriors“ reduzieren ihr kardiovaskuläres Risiko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1