{"title":"利用 checkMySequence 验证蛋白质晶体结构模型中的序列配准。","authors":"Grzegorz Chojnowski","doi":"10.1107/S2059798323003765","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence-register shifts remain one of the most elusive errors in experimental macromolecular models. They may affect model interpretation and propagate to newly built models from older structures. In a recent publication, it was shown that register shifts in cryo-EM models of proteins can be detected using a systematic reassignment of short model fragments to the target sequence. Here, it is shown that the same approach can be used to detect register shifts in crystal structure models using standard, model-bias-corrected electron-density maps (2mF<sub>o</sub> - DF<sub>c</sub>). Five register-shift errors in models deposited in the PDB detected using this method are described in detail.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306063/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequence-assignment validation in protein crystal structure models with checkMySequence.\",\"authors\":\"Grzegorz Chojnowski\",\"doi\":\"10.1107/S2059798323003765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequence-register shifts remain one of the most elusive errors in experimental macromolecular models. They may affect model interpretation and propagate to newly built models from older structures. In a recent publication, it was shown that register shifts in cryo-EM models of proteins can be detected using a systematic reassignment of short model fragments to the target sequence. Here, it is shown that the same approach can be used to detect register shifts in crystal structure models using standard, model-bias-corrected electron-density maps (2mF<sub>o</sub> - DF<sub>c</sub>). Five register-shift errors in models deposited in the PDB detected using this method are described in detail.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2059798323003765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798323003765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Sequence-assignment validation in protein crystal structure models with checkMySequence.
Sequence-register shifts remain one of the most elusive errors in experimental macromolecular models. They may affect model interpretation and propagate to newly built models from older structures. In a recent publication, it was shown that register shifts in cryo-EM models of proteins can be detected using a systematic reassignment of short model fragments to the target sequence. Here, it is shown that the same approach can be used to detect register shifts in crystal structure models using standard, model-bias-corrected electron-density maps (2mFo - DFc). Five register-shift errors in models deposited in the PDB detected using this method are described in detail.