glca:用于多组潜类分析的 R 软件包。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2022-07-01 Epub Date: 2022-05-11 DOI:10.1177/01466216221084197
Youngsun Kim, Saebom Jeon, Chi Chang, Hwan Chung
{"title":"glca:用于多组潜类分析的 R 软件包。","authors":"Youngsun Kim, Saebom Jeon, Chi Chang, Hwan Chung","doi":"10.1177/01466216221084197","DOIUrl":null,"url":null,"abstract":"<p><p>Group similarities and differences may manifest themselves in a variety of ways in multiple-group latent class analysis (LCA). Sometimes, measurement models are identical across groups in LCA. In other situations, the measurement models may differ, suggesting that the latent structure itself is different between groups. Tests of measurement invariance shed light on this distinction. We created an R package glca that implements procedures for exploring differences in latent class structure between populations, taking multilevel data structure into account. The glca package deals with the fixed-effect LCA and the nonparametric random-effect LCA; the former can be applied in the situation where populations are segmented by the observed group variable itself, whereas the latter can be used when there are too many levels in the group variable to make a meaningful group comparisons by identifying a group-level latent variable. The glca package consists of functions for statistical test procedures for exploring group differences in various LCA models considering multilevel data structure.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"46 5","pages":"439-441"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265491/pdf/10.1177_01466216221084197.pdf","citationCount":"0","resultStr":"{\"title\":\"glca: An R Package for Multiple-Group Latent Class Analysis.\",\"authors\":\"Youngsun Kim, Saebom Jeon, Chi Chang, Hwan Chung\",\"doi\":\"10.1177/01466216221084197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Group similarities and differences may manifest themselves in a variety of ways in multiple-group latent class analysis (LCA). Sometimes, measurement models are identical across groups in LCA. In other situations, the measurement models may differ, suggesting that the latent structure itself is different between groups. Tests of measurement invariance shed light on this distinction. We created an R package glca that implements procedures for exploring differences in latent class structure between populations, taking multilevel data structure into account. The glca package deals with the fixed-effect LCA and the nonparametric random-effect LCA; the former can be applied in the situation where populations are segmented by the observed group variable itself, whereas the latter can be used when there are too many levels in the group variable to make a meaningful group comparisons by identifying a group-level latent variable. The glca package consists of functions for statistical test procedures for exploring group differences in various LCA models considering multilevel data structure.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\"46 5\",\"pages\":\"439-441\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265491/pdf/10.1177_01466216221084197.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216221084197\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221084197","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在多组潜类分析(LCA)中,组别的相似性和差异性可能会以各种方式表现出来。有时,在 LCA 中各组的测量模型是相同的。在其他情况下,测量模型可能不同,这表明不同组之间的潜在结构本身是不同的。测量不变性测试揭示了这一区别。我们创建了一个 R 软件包 glca,该软件包在考虑多层次数据结构的基础上,实现了探索人群间潜类结构差异的程序。glca 软件包可处理固定效应 LCA 和非参数随机效应 LCA;前者可用于由观察到的群体变量本身对人群进行划分的情况,而后者可用于群体变量层次过多,无法通过识别群体水平潜变量进行有意义的群体比较的情况。glca 软件包包含一些函数,用于在考虑多层次数据结构的各种生命周期分析模型中探索群体差异的统计检验程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
glca: An R Package for Multiple-Group Latent Class Analysis.

Group similarities and differences may manifest themselves in a variety of ways in multiple-group latent class analysis (LCA). Sometimes, measurement models are identical across groups in LCA. In other situations, the measurement models may differ, suggesting that the latent structure itself is different between groups. Tests of measurement invariance shed light on this distinction. We created an R package glca that implements procedures for exploring differences in latent class structure between populations, taking multilevel data structure into account. The glca package deals with the fixed-effect LCA and the nonparametric random-effect LCA; the former can be applied in the situation where populations are segmented by the observed group variable itself, whereas the latter can be used when there are too many levels in the group variable to make a meaningful group comparisons by identifying a group-level latent variable. The glca package consists of functions for statistical test procedures for exploring group differences in various LCA models considering multilevel data structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1