{"title":"具有灵活广义对数链接的贝叶斯项目反应理论模型","authors":"Jiwei Zhang, Ying-Ying Zhang, Jian Tao, Ming-Hui Chen","doi":"10.1177/01466216221089343","DOIUrl":null,"url":null,"abstract":"<p><p>In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within the item response theory (IRT) framework has not been investigated yet. In this paper, we present a family of IRT models with generalized logit links, which include the traditional logistic and normal ogive models as special cases. This family of models are flexible enough not only to adjust the item characteristic curve tail probability by two shape parameters but also to allow us to fit the same link or different links to different items within the IRT model framework. In addition, the proposed models are implemented in the Stan software to sample from the posterior distributions. Using readily available Stan outputs, the four Bayesian model selection criteria are computed for guiding the choice of the links within the IRT model framework. Extensive simulation studies are conducted to examine the empirical performance of the proposed models and the model fittings in terms of \"in-sample\" and \"out-of-sample\" predictions based on the deviance. Finally, a detailed analysis of the real reading assessment data is carried out to illustrate the proposed methodology.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"46 5","pages":"382-405"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265488/pdf/10.1177_01466216221089343.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian Item Response Theory Models With Flexible Generalized Logit Links.\",\"authors\":\"Jiwei Zhang, Ying-Ying Zhang, Jian Tao, Ming-Hui Chen\",\"doi\":\"10.1177/01466216221089343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within the item response theory (IRT) framework has not been investigated yet. In this paper, we present a family of IRT models with generalized logit links, which include the traditional logistic and normal ogive models as special cases. This family of models are flexible enough not only to adjust the item characteristic curve tail probability by two shape parameters but also to allow us to fit the same link or different links to different items within the IRT model framework. In addition, the proposed models are implemented in the Stan software to sample from the posterior distributions. Using readily available Stan outputs, the four Bayesian model selection criteria are computed for guiding the choice of the links within the IRT model framework. Extensive simulation studies are conducted to examine the empirical performance of the proposed models and the model fittings in terms of \\\"in-sample\\\" and \\\"out-of-sample\\\" predictions based on the deviance. Finally, a detailed analysis of the real reading assessment data is carried out to illustrate the proposed methodology.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\"46 5\",\"pages\":\"382-405\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265488/pdf/10.1177_01466216221089343.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216221089343\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221089343","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
Bayesian Item Response Theory Models With Flexible Generalized Logit Links.
In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within the item response theory (IRT) framework has not been investigated yet. In this paper, we present a family of IRT models with generalized logit links, which include the traditional logistic and normal ogive models as special cases. This family of models are flexible enough not only to adjust the item characteristic curve tail probability by two shape parameters but also to allow us to fit the same link or different links to different items within the IRT model framework. In addition, the proposed models are implemented in the Stan software to sample from the posterior distributions. Using readily available Stan outputs, the four Bayesian model selection criteria are computed for guiding the choice of the links within the IRT model framework. Extensive simulation studies are conducted to examine the empirical performance of the proposed models and the model fittings in terms of "in-sample" and "out-of-sample" predictions based on the deviance. Finally, a detailed analysis of the real reading assessment data is carried out to illustrate the proposed methodology.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.