Na Jin Seo, Alex Barry, Mohammad Ghassemi, Kristen M Triandafilou, Mary Ellen Stoykov, Lynn Vidakovic, Elliot Roth, Derek G Kamper
{"title":"使用肌电控制游戏作为中风后手部肌肉激活模式再训练的治疗工具:一项试点研究。","authors":"Na Jin Seo, Alex Barry, Mohammad Ghassemi, Kristen M Triandafilou, Mary Ellen Stoykov, Lynn Vidakovic, Elliot Roth, Derek G Kamper","doi":"10.1097/NPT.0000000000000398","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/purpose: </strong>To determine the feasibility of training with electromyographically (EMG) controlled games to improve control of muscle activation patterns in stroke survivors.</p><p><strong>Methods: </strong>Twenty chronic stroke survivors (>6 months) with moderate hand impairment were randomized to train either unilaterally (paretic only) or bilaterally over 9 one-hour training sessions. EMG signals from the unilateral or bilateral limbs controlled a cursor location on a computer screen for gameplay. The EMG muscle activation vector was projected onto the plane defined by the first 2 principal components of the activation workspace for the nonparetic hand. These principal components formed the x- and y-axes of the computer screen.</p><p><strong>Results: </strong>The recruitment goal (n = 20) was met over 9 months, with no screen failure, no attrition, and 97.8% adherence rate. After training, both groups significantly decreased the time to move the cursor to a novel sequence of targets (P = 0.006) by reducing normalized path length of the cursor movement (P = 0.005), and improved the Wolf Motor Function Test (WMFT) quality score (P = 0.01). No significant group difference was observed. No significant change was seen in the WMFT time or Box and Block Test.</p><p><strong>Discussion/conclusions: </strong>Stroke survivors could successfully use the EMG-controlled games to train control of muscle activation patterns. While the nonparetic limb EMG was used in this study to create target EMG patterns, the system supports various means for creating target patterns per user desires. Future studies will employ training with the EMG-controlled games in conjunction with functional task practice for a longer intervention duration to improve overall hand function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A379).</p>","PeriodicalId":49030,"journal":{"name":"Journal of Neurologic Physical Therapy","volume":"46 3","pages":"198-205"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232857/pdf/nihms-1775132.pdf","citationCount":"4","resultStr":"{\"title\":\"Use of an EMG-Controlled Game as a Therapeutic Tool to Retrain Hand Muscle Activation Patterns Following Stroke: A Pilot Study.\",\"authors\":\"Na Jin Seo, Alex Barry, Mohammad Ghassemi, Kristen M Triandafilou, Mary Ellen Stoykov, Lynn Vidakovic, Elliot Roth, Derek G Kamper\",\"doi\":\"10.1097/NPT.0000000000000398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/purpose: </strong>To determine the feasibility of training with electromyographically (EMG) controlled games to improve control of muscle activation patterns in stroke survivors.</p><p><strong>Methods: </strong>Twenty chronic stroke survivors (>6 months) with moderate hand impairment were randomized to train either unilaterally (paretic only) or bilaterally over 9 one-hour training sessions. EMG signals from the unilateral or bilateral limbs controlled a cursor location on a computer screen for gameplay. The EMG muscle activation vector was projected onto the plane defined by the first 2 principal components of the activation workspace for the nonparetic hand. These principal components formed the x- and y-axes of the computer screen.</p><p><strong>Results: </strong>The recruitment goal (n = 20) was met over 9 months, with no screen failure, no attrition, and 97.8% adherence rate. After training, both groups significantly decreased the time to move the cursor to a novel sequence of targets (P = 0.006) by reducing normalized path length of the cursor movement (P = 0.005), and improved the Wolf Motor Function Test (WMFT) quality score (P = 0.01). No significant group difference was observed. No significant change was seen in the WMFT time or Box and Block Test.</p><p><strong>Discussion/conclusions: </strong>Stroke survivors could successfully use the EMG-controlled games to train control of muscle activation patterns. While the nonparetic limb EMG was used in this study to create target EMG patterns, the system supports various means for creating target patterns per user desires. Future studies will employ training with the EMG-controlled games in conjunction with functional task practice for a longer intervention duration to improve overall hand function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A379).</p>\",\"PeriodicalId\":49030,\"journal\":{\"name\":\"Journal of Neurologic Physical Therapy\",\"volume\":\"46 3\",\"pages\":\"198-205\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232857/pdf/nihms-1775132.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurologic Physical Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/NPT.0000000000000398\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurologic Physical Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/NPT.0000000000000398","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Use of an EMG-Controlled Game as a Therapeutic Tool to Retrain Hand Muscle Activation Patterns Following Stroke: A Pilot Study.
Background/purpose: To determine the feasibility of training with electromyographically (EMG) controlled games to improve control of muscle activation patterns in stroke survivors.
Methods: Twenty chronic stroke survivors (>6 months) with moderate hand impairment were randomized to train either unilaterally (paretic only) or bilaterally over 9 one-hour training sessions. EMG signals from the unilateral or bilateral limbs controlled a cursor location on a computer screen for gameplay. The EMG muscle activation vector was projected onto the plane defined by the first 2 principal components of the activation workspace for the nonparetic hand. These principal components formed the x- and y-axes of the computer screen.
Results: The recruitment goal (n = 20) was met over 9 months, with no screen failure, no attrition, and 97.8% adherence rate. After training, both groups significantly decreased the time to move the cursor to a novel sequence of targets (P = 0.006) by reducing normalized path length of the cursor movement (P = 0.005), and improved the Wolf Motor Function Test (WMFT) quality score (P = 0.01). No significant group difference was observed. No significant change was seen in the WMFT time or Box and Block Test.
Discussion/conclusions: Stroke survivors could successfully use the EMG-controlled games to train control of muscle activation patterns. While the nonparetic limb EMG was used in this study to create target EMG patterns, the system supports various means for creating target patterns per user desires. Future studies will employ training with the EMG-controlled games in conjunction with functional task practice for a longer intervention duration to improve overall hand function.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A379).
期刊介绍:
The Journal of Neurologic Physical Therapy (JNPT) is an indexed resource for dissemination of research-based evidence related to neurologic physical therapy intervention. High standards of quality are maintained through a rigorous, double-blinded, peer-review process and adherence to standards recommended by the International Committee of Medical Journal Editors. With an international editorial board made up of preeminent researchers and clinicians, JNPT publishes articles of global relevance for examination, evaluation, prognosis, intervention, and outcomes for individuals with movement deficits due to neurologic conditions. Through systematic reviews, research articles, case studies, and clinical perspectives, JNPT promotes the integration of evidence into theory, education, research, and practice of neurologic physical therapy, spanning the continuum from pathophysiology to societal participation.