Yajun Wu, Ken Ruffley, Elliot Dhuey, Christopher M Hadad, Melvin A Pascall
{"title":"铁罐蒸煮鸡汤顶空气中腐蚀性挥发性化合物的鉴定。","authors":"Yajun Wu, Ken Ruffley, Elliot Dhuey, Christopher M Hadad, Melvin A Pascall","doi":"10.1155/2023/9662709","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the development of volatile compounds in the headspace of canned chicken noodle soup (and sought to develop appropriate testing methods). The primary objective of this study was to identify compounds in the soup that were responsible for the initiation of the corrosion in the cans. The long-term goal of these studies is to develop an efficient method to investigate how headspace volatile compounds in foods could cause corrosion defects in metal cans and how these could be corrected without undermining the quality and safety of the food. To determine and to evaluate the volatile compounds in the canned soups, selected ion flow tube-mass spectrometry (SIFT-MS) was used. The coatings of the tested cans were carefully stripped off and analyzed using this SIFT-MS method. High levels of sulfur-containing volatile compounds and organic acids were detected in both the soups and the coatings. It was concluded that during the retorting of the sealed cans filled with chicken soup, sulfur-containing volatile compounds formed and entered the headspace of the tested cans and interacted with the coating, leading to the formation of blackened stains.</p>","PeriodicalId":14125,"journal":{"name":"International Journal of Food Science","volume":"2023 ","pages":"9662709"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Corrosive Volatile Compounds Found in the Headspace of Chicken Noodle Soup Retorted in Metal Cans.\",\"authors\":\"Yajun Wu, Ken Ruffley, Elliot Dhuey, Christopher M Hadad, Melvin A Pascall\",\"doi\":\"10.1155/2023/9662709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the development of volatile compounds in the headspace of canned chicken noodle soup (and sought to develop appropriate testing methods). The primary objective of this study was to identify compounds in the soup that were responsible for the initiation of the corrosion in the cans. The long-term goal of these studies is to develop an efficient method to investigate how headspace volatile compounds in foods could cause corrosion defects in metal cans and how these could be corrected without undermining the quality and safety of the food. To determine and to evaluate the volatile compounds in the canned soups, selected ion flow tube-mass spectrometry (SIFT-MS) was used. The coatings of the tested cans were carefully stripped off and analyzed using this SIFT-MS method. High levels of sulfur-containing volatile compounds and organic acids were detected in both the soups and the coatings. It was concluded that during the retorting of the sealed cans filled with chicken soup, sulfur-containing volatile compounds formed and entered the headspace of the tested cans and interacted with the coating, leading to the formation of blackened stains.</p>\",\"PeriodicalId\":14125,\"journal\":{\"name\":\"International Journal of Food Science\",\"volume\":\"2023 \",\"pages\":\"9662709\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9662709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9662709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Identification of Corrosive Volatile Compounds Found in the Headspace of Chicken Noodle Soup Retorted in Metal Cans.
This study investigated the development of volatile compounds in the headspace of canned chicken noodle soup (and sought to develop appropriate testing methods). The primary objective of this study was to identify compounds in the soup that were responsible for the initiation of the corrosion in the cans. The long-term goal of these studies is to develop an efficient method to investigate how headspace volatile compounds in foods could cause corrosion defects in metal cans and how these could be corrected without undermining the quality and safety of the food. To determine and to evaluate the volatile compounds in the canned soups, selected ion flow tube-mass spectrometry (SIFT-MS) was used. The coatings of the tested cans were carefully stripped off and analyzed using this SIFT-MS method. High levels of sulfur-containing volatile compounds and organic acids were detected in both the soups and the coatings. It was concluded that during the retorting of the sealed cans filled with chicken soup, sulfur-containing volatile compounds formed and entered the headspace of the tested cans and interacted with the coating, leading to the formation of blackened stains.
期刊介绍:
International Journal of Food Science is a peer-reviewed, Open Access journal that publishes research and review articles in all areas of food science. As a multidisciplinary journal, articles discussing all aspects of food science will be considered, including, but not limited to: enhancing shelf life, food deterioration, food engineering, food handling, food processing, food quality, food safety, microbiology, and nutritional research. The journal aims to provide a valuable resource for food scientists, food producers, food retailers, nutritionists, the public health sector, and relevant governmental and non-governmental agencies.