一个灵活的贝叶斯框架估计年龄和原因特定的儿童死亡率随时间的样本登记数据。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2022-03-01 DOI:10.1214/21-aoas1489
Austin E Schumacher, Tyler H McCormick, Jon Wakefield, Yue Chu, Jamie Perin, Francisco Villavicencio, Noah Simon, Li Liu
{"title":"一个灵活的贝叶斯框架估计年龄和原因特定的儿童死亡率随时间的样本登记数据。","authors":"Austin E Schumacher,&nbsp;Tyler H McCormick,&nbsp;Jon Wakefield,&nbsp;Yue Chu,&nbsp;Jamie Perin,&nbsp;Francisco Villavicencio,&nbsp;Noah Simon,&nbsp;Li Liu","doi":"10.1214/21-aoas1489","DOIUrl":null,"url":null,"abstract":"<p><p>In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High-quality data is not available in settings where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"124-143"},"PeriodicalIF":1.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448806/pdf/nihms-1862449.pdf","citationCount":"3","resultStr":"{\"title\":\"A FLEXIBLE BAYESIAN FRAMEWORK TO ESTIMATE AGE- AND CAUSE-SPECIFIC CHILD MORTALITY OVER TIME FROM SAMPLE REGISTRATION DATA.\",\"authors\":\"Austin E Schumacher,&nbsp;Tyler H McCormick,&nbsp;Jon Wakefield,&nbsp;Yue Chu,&nbsp;Jamie Perin,&nbsp;Francisco Villavicencio,&nbsp;Noah Simon,&nbsp;Li Liu\",\"doi\":\"10.1214/21-aoas1489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High-quality data is not available in settings where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"16 1\",\"pages\":\"124-143\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448806/pdf/nihms-1862449.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aoas1489\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aoas1489","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

为了在年轻群体中实施针对特定疾病的干预措施,低收入和中等收入国家的决策者需要及时和准确地估计针对特定年龄和原因的儿童死亡率。在最需要这些干预措施的环境中没有高质量的数据,但正在推动建立收集详细死亡率信息的样本登记系统。目前根据这些数据估计死亡率的方法采用多阶段框架,没有严格的统计依据,分别估计全因死亡率和特定原因死亡率,适应性不足,无法捕捉数据的重要特征。我们提出了一个灵活的贝叶斯建模框架来估计年龄和特定原因的儿童死亡率从样本登记数据。我们为该框架提供了理论依据,通过模拟探索其特性,并利用中国妇幼健康监测系统的数据来估计死亡率趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A FLEXIBLE BAYESIAN FRAMEWORK TO ESTIMATE AGE- AND CAUSE-SPECIFIC CHILD MORTALITY OVER TIME FROM SAMPLE REGISTRATION DATA.

In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High-quality data is not available in settings where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1