Enas Mangoush, Sufyan Garoushi, Pekka Vallittu, Lippo Lassila
{"title":"短纤维增强复合材料和玻璃陶瓷固定局部义齿的承载能力和磨损特性。","authors":"Enas Mangoush, Sufyan Garoushi, Pekka Vallittu, Lippo Lassila","doi":"10.1111/eos.12951","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to evaluate load-bearing capacity and wear performance of experimental short fiber-reinforced composite (SFRC) and conventional lithium-disilicate CAD/CAM fabricated fixed partial dentures (FPDs). Two groups (<i>n</i> = 12/group) of three-unit CAD/CAM fabricated posterior FPDs were made. The first group used experimental SFRC blocks, and the second group fabricated from lithium-disilicate (IPS e.max CAD). All FPDs were luted on a zirconia testing jig with dual-curing resin cement. Half of FPDs per group were quasi-statically loaded until fracture. The other half experienced cyclic fatigue aging (100.000 cycles, Fmax = 500 N) before loading quasi-statically until fracture. Fracture mode was examined using SEM. Wear test was performed using 15,000 loading cycles. Both material type and aging had a significant effect on the load-bearing capacity of FPDs. Experimental SFRC CAD without fatigue aging had significantly the highest load-bearing capacity (2096 ± 149N). Cyclic fatigue aging decreased the load-bearing capacity of the SFRC group (1709 ± 188N) but increased it for the lithium-disilicate group (1546 ± 155N). Wear depth values of SFRC CAD (29.3μm) were significantly lower compared to lithium-disilicate (54.2μm). Experimental SFRC CAD demonstrated the highest load-bearing capacity before and after cyclic fatigue aging, and superior wear behavior compared to the control material.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load-bearing capacity and wear characteristics of short fiber-reinforced composite and glass ceramic fixed partial dentures\",\"authors\":\"Enas Mangoush, Sufyan Garoushi, Pekka Vallittu, Lippo Lassila\",\"doi\":\"10.1111/eos.12951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this study was to evaluate load-bearing capacity and wear performance of experimental short fiber-reinforced composite (SFRC) and conventional lithium-disilicate CAD/CAM fabricated fixed partial dentures (FPDs). Two groups (<i>n</i> = 12/group) of three-unit CAD/CAM fabricated posterior FPDs were made. The first group used experimental SFRC blocks, and the second group fabricated from lithium-disilicate (IPS e.max CAD). All FPDs were luted on a zirconia testing jig with dual-curing resin cement. Half of FPDs per group were quasi-statically loaded until fracture. The other half experienced cyclic fatigue aging (100.000 cycles, Fmax = 500 N) before loading quasi-statically until fracture. Fracture mode was examined using SEM. Wear test was performed using 15,000 loading cycles. Both material type and aging had a significant effect on the load-bearing capacity of FPDs. Experimental SFRC CAD without fatigue aging had significantly the highest load-bearing capacity (2096 ± 149N). Cyclic fatigue aging decreased the load-bearing capacity of the SFRC group (1709 ± 188N) but increased it for the lithium-disilicate group (1546 ± 155N). Wear depth values of SFRC CAD (29.3μm) were significantly lower compared to lithium-disilicate (54.2μm). Experimental SFRC CAD demonstrated the highest load-bearing capacity before and after cyclic fatigue aging, and superior wear behavior compared to the control material.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12951\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12951","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Load-bearing capacity and wear characteristics of short fiber-reinforced composite and glass ceramic fixed partial dentures
The aim of this study was to evaluate load-bearing capacity and wear performance of experimental short fiber-reinforced composite (SFRC) and conventional lithium-disilicate CAD/CAM fabricated fixed partial dentures (FPDs). Two groups (n = 12/group) of three-unit CAD/CAM fabricated posterior FPDs were made. The first group used experimental SFRC blocks, and the second group fabricated from lithium-disilicate (IPS e.max CAD). All FPDs were luted on a zirconia testing jig with dual-curing resin cement. Half of FPDs per group were quasi-statically loaded until fracture. The other half experienced cyclic fatigue aging (100.000 cycles, Fmax = 500 N) before loading quasi-statically until fracture. Fracture mode was examined using SEM. Wear test was performed using 15,000 loading cycles. Both material type and aging had a significant effect on the load-bearing capacity of FPDs. Experimental SFRC CAD without fatigue aging had significantly the highest load-bearing capacity (2096 ± 149N). Cyclic fatigue aging decreased the load-bearing capacity of the SFRC group (1709 ± 188N) but increased it for the lithium-disilicate group (1546 ± 155N). Wear depth values of SFRC CAD (29.3μm) were significantly lower compared to lithium-disilicate (54.2μm). Experimental SFRC CAD demonstrated the highest load-bearing capacity before and after cyclic fatigue aging, and superior wear behavior compared to the control material.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.