Xiaoxi Li, Jonathan Storkey, Andrew Mead, Ian Shield, Ian Clark, Richard Ostler, Beth Roberts, Achim Dobermann
{"title":"二十一世纪新的Rothamsted长期实地试验:原则和实践。","authors":"Xiaoxi Li, Jonathan Storkey, Andrew Mead, Ian Shield, Ian Clark, Richard Ostler, Beth Roberts, Achim Dobermann","doi":"10.1007/s13593-023-00914-8","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors—phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"43 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-023-00914-8.pdf","citationCount":"0","resultStr":"{\"title\":\"A new Rothamsted long-term field experiment for the twenty-first century: principles and practice\",\"authors\":\"Xiaoxi Li, Jonathan Storkey, Andrew Mead, Ian Shield, Ian Clark, Richard Ostler, Beth Roberts, Achim Dobermann\",\"doi\":\"10.1007/s13593-023-00914-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors—phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems.</p></div>\",\"PeriodicalId\":7721,\"journal\":{\"name\":\"Agronomy for Sustainable Development\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13593-023-00914-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy for Sustainable Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13593-023-00914-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-023-00914-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A new Rothamsted long-term field experiment for the twenty-first century: principles and practice
Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors—phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.