激光粉末床融合技术生产的薄壁零件上的支撑物去除。

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI:10.1089/3dp.2021.0268
Qiqiang Cao, Yuchao Bai, Zhongpeng Zheng, Jiong Zhang, Jerry Ying Hsi Fuh, Hao Wang
{"title":"激光粉末床融合技术生产的薄壁零件上的支撑物去除。","authors":"Qiqiang Cao, Yuchao Bai, Zhongpeng Zheng, Jiong Zhang, Jerry Ying Hsi Fuh, Hao Wang","doi":"10.1089/3dp.2021.0268","DOIUrl":null,"url":null,"abstract":"<p><p>Support removal is one of the thorny issues faced by laser powder bed fusion (LPBF). In particular, the efficient and safe removal of support structures from the thin-walled parts and obtaining high-quality surfaces still remains a challenge owing to their sensitivity to machining. An in-depth understanding of the material response behavior of LPBF thin-walled parts when removing support structures is necessary for overcoming this challenge. The work is divided into two parts: revealing the support removal mechanism and proposing a solution to improve the support machinability. First, the machinability of support structures on thin-walled parts with different thicknesses at different cutting depths was thoroughly investigated. Experimental investigation on cutting force, surface morphology, and deflection were carried out. The results show that cutting forces increase gradually at each cut owing to the tilt and collapse of support structures. The surface morphology is improved as the sample thickness increases but deteriorated as the cutting depth increases. Second, a novel solution of adding resin is proposed to improve the support machinability and good results have been achieved. The <i>z</i>-direction cutting forces for 0.3 and 0.4 mm thickness samples are reduced by 72.6% and 64.6%, respectively, and no deflection of the sample is observed after support removal. Moreover, finite element method simulations are established to further explain the support removal mechanism.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"762-775"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440680/pdf/","citationCount":"0","resultStr":"{\"title\":\"Support Removal on Thin-Walled Parts Produced by Laser Powder Bed Fusion.\",\"authors\":\"Qiqiang Cao, Yuchao Bai, Zhongpeng Zheng, Jiong Zhang, Jerry Ying Hsi Fuh, Hao Wang\",\"doi\":\"10.1089/3dp.2021.0268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Support removal is one of the thorny issues faced by laser powder bed fusion (LPBF). In particular, the efficient and safe removal of support structures from the thin-walled parts and obtaining high-quality surfaces still remains a challenge owing to their sensitivity to machining. An in-depth understanding of the material response behavior of LPBF thin-walled parts when removing support structures is necessary for overcoming this challenge. The work is divided into two parts: revealing the support removal mechanism and proposing a solution to improve the support machinability. First, the machinability of support structures on thin-walled parts with different thicknesses at different cutting depths was thoroughly investigated. Experimental investigation on cutting force, surface morphology, and deflection were carried out. The results show that cutting forces increase gradually at each cut owing to the tilt and collapse of support structures. The surface morphology is improved as the sample thickness increases but deteriorated as the cutting depth increases. Second, a novel solution of adding resin is proposed to improve the support machinability and good results have been achieved. The <i>z</i>-direction cutting forces for 0.3 and 0.4 mm thickness samples are reduced by 72.6% and 64.6%, respectively, and no deflection of the sample is observed after support removal. Moreover, finite element method simulations are established to further explain the support removal mechanism.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 4\",\"pages\":\"762-775\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0268\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0268","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

去除支撑结构是激光粉末床熔融(LPBF)面临的棘手问题之一。特别是,由于支撑结构对加工的敏感性,如何高效、安全地去除薄壁部件上的支撑结构并获得高质量的表面仍然是一个挑战。要克服这一挑战,就必须深入了解 LPBF 薄壁零件在去除支撑结构时的材料响应行为。本研究分为两部分:揭示支撑结构的去除机理和提出改善支撑结构可加工性的解决方案。首先,深入研究了不同切削深度下不同厚度薄壁零件上支撑结构的可加工性。对切削力、表面形貌和挠度进行了实验研究。结果表明,由于支撑结构的倾斜和塌陷,每次切削时切削力都会逐渐增加。随着试样厚度的增加,表面形态得到改善,但随着切割深度的增加,表面形态恶化。其次,提出了一种添加树脂的新方案来改善支撑结构的可加工性,并取得了良好的效果。厚度分别为 0.3 毫米和 0.4 毫米的样品的 Z 方向切削力分别降低了 72.6% 和 64.6%,并且在去除支撑后没有观察到样品变形。此外,还建立了有限元法模拟,以进一步解释支撑去除机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support Removal on Thin-Walled Parts Produced by Laser Powder Bed Fusion.

Support removal is one of the thorny issues faced by laser powder bed fusion (LPBF). In particular, the efficient and safe removal of support structures from the thin-walled parts and obtaining high-quality surfaces still remains a challenge owing to their sensitivity to machining. An in-depth understanding of the material response behavior of LPBF thin-walled parts when removing support structures is necessary for overcoming this challenge. The work is divided into two parts: revealing the support removal mechanism and proposing a solution to improve the support machinability. First, the machinability of support structures on thin-walled parts with different thicknesses at different cutting depths was thoroughly investigated. Experimental investigation on cutting force, surface morphology, and deflection were carried out. The results show that cutting forces increase gradually at each cut owing to the tilt and collapse of support structures. The surface morphology is improved as the sample thickness increases but deteriorated as the cutting depth increases. Second, a novel solution of adding resin is proposed to improve the support machinability and good results have been achieved. The z-direction cutting forces for 0.3 and 0.4 mm thickness samples are reduced by 72.6% and 64.6%, respectively, and no deflection of the sample is observed after support removal. Moreover, finite element method simulations are established to further explain the support removal mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1