Karoline Leiberg , Jane de Tisi , John S. Duncan , Bethany Little , Peter N. Taylor , Sjoerd B. Vos , Gavin P. Winston , Bruno Mota , Yujiang Wang
{"title":"前颞叶切除对皮质形态的影响","authors":"Karoline Leiberg , Jane de Tisi , John S. Duncan , Bethany Little , Peter N. Taylor , Sjoerd B. Vos , Gavin P. Winston , Bruno Mota , Yujiang Wang","doi":"10.1016/j.cortex.2023.04.018","DOIUrl":null,"url":null,"abstract":"<div><p>Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables.</p><p>We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2–13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures <em>K</em>, <em>I</em>, and <em>S</em>, where <em>K</em> measures white matter tension, <em>I</em> captures isometric scaling, and <em>S</em> contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR.</p><p>Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole.</p><p>The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.</p></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"166 ","pages":"Pages 233-242"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of anterior temporal lobe resection on cortical morphology\",\"authors\":\"Karoline Leiberg , Jane de Tisi , John S. Duncan , Bethany Little , Peter N. Taylor , Sjoerd B. Vos , Gavin P. Winston , Bruno Mota , Yujiang Wang\",\"doi\":\"10.1016/j.cortex.2023.04.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables.</p><p>We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2–13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures <em>K</em>, <em>I</em>, and <em>S</em>, where <em>K</em> measures white matter tension, <em>I</em> captures isometric scaling, and <em>S</em> contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR.</p><p>Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole.</p><p>The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.</p></div>\",\"PeriodicalId\":10758,\"journal\":{\"name\":\"Cortex\",\"volume\":\"166 \",\"pages\":\"Pages 233-242\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cortex\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010945223001351\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945223001351","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Effects of anterior temporal lobe resection on cortical morphology
Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables.
We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2–13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures K, I, and S, where K measures white matter tension, I captures isometric scaling, and S contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR.
Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole.
The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.
期刊介绍:
CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.