{"title":"非比例风险下的双样本推理程序。","authors":"Yi-Cheng Tai, Weijing Wang, Martin T Wells","doi":"10.1002/pst.2324","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a new two-sample inference procedure to assess the relative performance of two groups over time. Our model-free method does not assume proportional hazards, making it suitable for scenarios where nonproportional hazards may exist. Our procedure includes a diagnostic tau plot to identify changes in hazard timing and a formal inference procedure. The tau-based measures we develop are clinically meaningful and provide interpretable estimands to summarize the treatment effect over time. Our proposed statistic is a U-statistic and exhibits a martingale structure, allowing us to construct confidence intervals and perform hypothesis testing. Our approach is robust with respect to the censoring distribution. We also demonstrate how our method can be applied for sensitivity analysis in scenarios with missing tail information due to insufficient follow-up. Without censoring, Kendall's tau estimator we propose reduces to the Wilcoxon-Mann-Whitney statistic. We evaluate our method using simulations to compare its performance with the restricted mean survival time and log-rank statistics. We also apply our approach to data from several published oncology clinical trials where nonproportional hazards may exist.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-sample inference procedures under nonproportional hazards.\",\"authors\":\"Yi-Cheng Tai, Weijing Wang, Martin T Wells\",\"doi\":\"10.1002/pst.2324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a new two-sample inference procedure to assess the relative performance of two groups over time. Our model-free method does not assume proportional hazards, making it suitable for scenarios where nonproportional hazards may exist. Our procedure includes a diagnostic tau plot to identify changes in hazard timing and a formal inference procedure. The tau-based measures we develop are clinically meaningful and provide interpretable estimands to summarize the treatment effect over time. Our proposed statistic is a U-statistic and exhibits a martingale structure, allowing us to construct confidence intervals and perform hypothesis testing. Our approach is robust with respect to the censoring distribution. We also demonstrate how our method can be applied for sensitivity analysis in scenarios with missing tail information due to insufficient follow-up. Without censoring, Kendall's tau estimator we propose reduces to the Wilcoxon-Mann-Whitney statistic. We evaluate our method using simulations to compare its performance with the restricted mean survival time and log-rank statistics. We also apply our approach to data from several published oncology clinical trials where nonproportional hazards may exist.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Two-sample inference procedures under nonproportional hazards.
We introduce a new two-sample inference procedure to assess the relative performance of two groups over time. Our model-free method does not assume proportional hazards, making it suitable for scenarios where nonproportional hazards may exist. Our procedure includes a diagnostic tau plot to identify changes in hazard timing and a formal inference procedure. The tau-based measures we develop are clinically meaningful and provide interpretable estimands to summarize the treatment effect over time. Our proposed statistic is a U-statistic and exhibits a martingale structure, allowing us to construct confidence intervals and perform hypothesis testing. Our approach is robust with respect to the censoring distribution. We also demonstrate how our method can be applied for sensitivity analysis in scenarios with missing tail information due to insufficient follow-up. Without censoring, Kendall's tau estimator we propose reduces to the Wilcoxon-Mann-Whitney statistic. We evaluate our method using simulations to compare its performance with the restricted mean survival time and log-rank statistics. We also apply our approach to data from several published oncology clinical trials where nonproportional hazards may exist.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.