分子报告渠道融合规则的博弈论分析。

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2023-07-06 DOI:10.1109/TNB.2023.3290609
Sunil Kumar;Prabhat Kumar Sharma;Manav R. Bhatnagar
{"title":"分子报告渠道融合规则的博弈论分析。","authors":"Sunil Kumar;Prabhat Kumar Sharma;Manav R. Bhatnagar","doi":"10.1109/TNB.2023.3290609","DOIUrl":null,"url":null,"abstract":"This work adopts a game theoretic approach to analyze the behavior of transmitter nanomachines (TNMs) in a diffusive 3-dimensional (3-D) channel. In order to communicate the local observations about the region of interest (RoI) to a common supervisor nanomachine (SNM), TNMs transmit information-carrying molecules to SNM. For the production of information-carrying molecules, all the TNMs share the common food molecular budget (CFMB). The TNMs apply cooperative and greedy strategic efforts to get their share from the CFMB. In the cooperative case, all the TNMs communicate to SNM as a group, therefore they cooperatively consume the CFMB to increase the group outcome, whereas, in the greedy scenario, all TNMs decide to perform alone and thus greedily consume the CFMB to increase their individual outcomes. The performance is evaluated in terms of the average rate of success, the average probability of error, and the receiver operating characteristic (ROC) of RoI detection. The derived results are verified through Monte-Carlo and particle-based simulations (PBS).","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Game-Theoretic Analysis of Fusion Rules Over Molecular Reporting Channels\",\"authors\":\"Sunil Kumar;Prabhat Kumar Sharma;Manav R. Bhatnagar\",\"doi\":\"10.1109/TNB.2023.3290609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work adopts a game theoretic approach to analyze the behavior of transmitter nanomachines (TNMs) in a diffusive 3-dimensional (3-D) channel. In order to communicate the local observations about the region of interest (RoI) to a common supervisor nanomachine (SNM), TNMs transmit information-carrying molecules to SNM. For the production of information-carrying molecules, all the TNMs share the common food molecular budget (CFMB). The TNMs apply cooperative and greedy strategic efforts to get their share from the CFMB. In the cooperative case, all the TNMs communicate to SNM as a group, therefore they cooperatively consume the CFMB to increase the group outcome, whereas, in the greedy scenario, all TNMs decide to perform alone and thus greedily consume the CFMB to increase their individual outcomes. The performance is evaluated in terms of the average rate of success, the average probability of error, and the receiver operating characteristic (ROC) of RoI detection. The derived results are verified through Monte-Carlo and particle-based simulations (PBS).\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10175061/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10175061/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究采用博弈论方法分析了发射纳米机械(TNMs)在扩散三维(3-D)通道中的行为。为了将对感兴趣区域(RoI)的局部观察结果传递给一个共同的主管纳米机器(SNM),TNM 向 SNM 传递携带信息的分子。为了生产携带信息的分子,所有 TNM 共享共同的食物分子预算(CFMB)。TNM 采用合作和贪婪两种策略努力从 CFMB 中获取各自的份额。在合作情况下,所有 TNM 作为一个群体与 SNM 通信,因此它们合作消耗 CFMB 以增加群体成果;而在贪婪情况下,所有 TNM 决定单独行动,因此贪婪地消耗 CFMB 以增加它们的个体成果。通过平均成功率、平均错误概率和 RoI 检测的接收器操作特性 (ROC) 对性能进行了评估。得出的结果通过蒙特卡洛和粒子模拟(PBS)进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Game-Theoretic Analysis of Fusion Rules Over Molecular Reporting Channels
This work adopts a game theoretic approach to analyze the behavior of transmitter nanomachines (TNMs) in a diffusive 3-dimensional (3-D) channel. In order to communicate the local observations about the region of interest (RoI) to a common supervisor nanomachine (SNM), TNMs transmit information-carrying molecules to SNM. For the production of information-carrying molecules, all the TNMs share the common food molecular budget (CFMB). The TNMs apply cooperative and greedy strategic efforts to get their share from the CFMB. In the cooperative case, all the TNMs communicate to SNM as a group, therefore they cooperatively consume the CFMB to increase the group outcome, whereas, in the greedy scenario, all TNMs decide to perform alone and thus greedily consume the CFMB to increase their individual outcomes. The performance is evaluated in terms of the average rate of success, the average probability of error, and the receiver operating characteristic (ROC) of RoI detection. The derived results are verified through Monte-Carlo and particle-based simulations (PBS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Molecular Communication-Based Intelligent Dopamine Rate Modulator for Parkinson’s Disease Treatment State Observer Synchronization of Three-dimensional Chaotic Oscillatory Systems Based on DNA Strand Displacement Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching A Representation Learning Approach for Predicting circRNA Back-Splicing Event via Sequence-Interaction-Aware Dual Encoder. Design and Performance Evaluation of Machine Learning-based Terahertz Metasurface Chemical Sensor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1