{"title":"有害白蚁布氏隐翅白蚁(Blattaria,等翅目,白蚁科)的精巢和鞘腺随交配和产卵而发生的变化。","authors":"Iago Bueno da Silva, Ana Maria Costa-Leonardo","doi":"10.1007/s00709-023-01891-1","DOIUrl":null,"url":null,"abstract":"<p><p>The spermatheca and colleterial glands of female insects are organs associated with the reproductive system, responsible for sperm storage and secretion of egg coverings, respectively. Here we compared the development, secretory activity, and chemical nature of the secretion in the spermatheca and colleterial glands of different-aged females of the drywood termite Cryptotermes brevis. We also provide the ultrastructure of these organs in alate females. These structures have been poorly investigated in termites when compared to other eusocial insects (Hymenoptera) and termite-related dictyopterans (mantises and cockroaches). The spermatheca of C. brevis comprises a cone-shaped structure, connected to the genital chamber by a short duct. The colleterial glands, in turn, are divided into anterior and posterior tubules, each showing a basal trunk, and join into a common duct. Histological and histochemical analyses showed that the secretion of proteins and polysaccharides by the spermatheca takes place before pairing, but increases as females mate and store sperm. Colleterial glands of alates showed non-synchronous secretory activity, but the synthesis of products increased in egg-laying queens, together with the epithelium height. Ultrastructure of the spermatheca and colleterial glands revealed epithelia composed of class III secretory cells. Richness of mitochondria and electron-dense secretion in the spermatheca indicates synthesis and transport of content. Presence and absence of colleterial gland secretion in different individuals may reflect variable maturation stages of the females and secretory cells. Assuming that termites are iteroparous, the development and secretion of the spermatheca and colleterial glands play a crucial role for C. brevis queens.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mating- and oviposition-dependent changes of the spermatheca and colleterial glands in the pest termite Cryptotermes brevis (Blattaria, Isoptera, Kalotermitidae).\",\"authors\":\"Iago Bueno da Silva, Ana Maria Costa-Leonardo\",\"doi\":\"10.1007/s00709-023-01891-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spermatheca and colleterial glands of female insects are organs associated with the reproductive system, responsible for sperm storage and secretion of egg coverings, respectively. Here we compared the development, secretory activity, and chemical nature of the secretion in the spermatheca and colleterial glands of different-aged females of the drywood termite Cryptotermes brevis. We also provide the ultrastructure of these organs in alate females. These structures have been poorly investigated in termites when compared to other eusocial insects (Hymenoptera) and termite-related dictyopterans (mantises and cockroaches). The spermatheca of C. brevis comprises a cone-shaped structure, connected to the genital chamber by a short duct. The colleterial glands, in turn, are divided into anterior and posterior tubules, each showing a basal trunk, and join into a common duct. Histological and histochemical analyses showed that the secretion of proteins and polysaccharides by the spermatheca takes place before pairing, but increases as females mate and store sperm. Colleterial glands of alates showed non-synchronous secretory activity, but the synthesis of products increased in egg-laying queens, together with the epithelium height. Ultrastructure of the spermatheca and colleterial glands revealed epithelia composed of class III secretory cells. Richness of mitochondria and electron-dense secretion in the spermatheca indicates synthesis and transport of content. Presence and absence of colleterial gland secretion in different individuals may reflect variable maturation stages of the females and secretory cells. Assuming that termites are iteroparous, the development and secretion of the spermatheca and colleterial glands play a crucial role for C. brevis queens.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-023-01891-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-023-01891-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
雌性昆虫的精巢和鞘状腺是与生殖系统相关的器官,分别负责储存精子和分泌卵子包被物。在这里,我们比较了不同年龄的干材白蚁雌虫精巢和合子腺的发育、分泌活动和分泌物的化学性质。我们还提供了这些器官在雌白蚁中的超微结构。与其他雌性昆虫(膜翅目)和与白蚁有关的双翅目昆虫(螳螂和蟑螂)相比,我们对白蚁的这些结构研究得很少。布氏白蚁的精巢由一个锥形结构组成,通过一个短导管与生殖室相连。聚合腺又分为前管和后管,每个都有一个基干,并汇入一个共同的导管。组织学和组织化学分析表明,精巢在配对前分泌蛋白质和多糖,但随着雌性交配和储存精子,分泌量会增加。鳞翅目雌蚁的副乳腺显示出非同步的分泌活动,但在产卵雌蚁中,产品的合成与上皮细胞的高度一起增加。精巢和合子腺的超微结构显示,上皮由 III 类分泌细胞组成。精囊中丰富的线粒体和电子致密的分泌物表明了精子的合成和运输。不同个体有无副鞘腺分泌物可能反映了雌蚁和分泌细胞的不同成熟阶段。假设白蚁是雌雄异体的,那么精巢和鞘状腺的发育和分泌对白蚁蚁后起着至关重要的作用。
Mating- and oviposition-dependent changes of the spermatheca and colleterial glands in the pest termite Cryptotermes brevis (Blattaria, Isoptera, Kalotermitidae).
The spermatheca and colleterial glands of female insects are organs associated with the reproductive system, responsible for sperm storage and secretion of egg coverings, respectively. Here we compared the development, secretory activity, and chemical nature of the secretion in the spermatheca and colleterial glands of different-aged females of the drywood termite Cryptotermes brevis. We also provide the ultrastructure of these organs in alate females. These structures have been poorly investigated in termites when compared to other eusocial insects (Hymenoptera) and termite-related dictyopterans (mantises and cockroaches). The spermatheca of C. brevis comprises a cone-shaped structure, connected to the genital chamber by a short duct. The colleterial glands, in turn, are divided into anterior and posterior tubules, each showing a basal trunk, and join into a common duct. Histological and histochemical analyses showed that the secretion of proteins and polysaccharides by the spermatheca takes place before pairing, but increases as females mate and store sperm. Colleterial glands of alates showed non-synchronous secretory activity, but the synthesis of products increased in egg-laying queens, together with the epithelium height. Ultrastructure of the spermatheca and colleterial glands revealed epithelia composed of class III secretory cells. Richness of mitochondria and electron-dense secretion in the spermatheca indicates synthesis and transport of content. Presence and absence of colleterial gland secretion in different individuals may reflect variable maturation stages of the females and secretory cells. Assuming that termites are iteroparous, the development and secretion of the spermatheca and colleterial glands play a crucial role for C. brevis queens.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".