特发性全身性癫痫DMD基因亚区分析。

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Neurogenetics Pub Date : 2023-07-01 Epub Date: 2023-04-06 DOI:10.1007/s10048-023-00715-x
Zhi-Jian Lin, Bi-Xia Huang, Li-Fang Su, Sheng-Yin Zhu, Jun-Wei He, Guo-Zhang Chen, Peng-Xing Lin
{"title":"特发性全身性癫痫DMD基因亚区分析。","authors":"Zhi-Jian Lin,&nbsp;Bi-Xia Huang,&nbsp;Li-Fang Su,&nbsp;Sheng-Yin Zhu,&nbsp;Jun-Wei He,&nbsp;Guo-Zhang Chen,&nbsp;Peng-Xing Lin","doi":"10.1007/s10048-023-00715-x","DOIUrl":null,"url":null,"abstract":"<p><p>Gene sub-region encoded protein domain is the basic unit for protein structure and function. The DMD gene is the largest coding gene in humans, with its phenotype relevant to idiopathic generalized epilepsy. We hypothesized variants clustered in sub-regions of idiopathic generalized epilepsy genes and investigated the relationship between the DMD gene and idiopathic generalized epilepsy. Whole exome sequencing was performed in 106 idiopathic generalized epilepsy individuals. DMD variants were filtered with variant type, allele frequency, in silico prediction, hemizygous or homozygous status in the population, inheritance mode, and domain location. Variants located at the sub-regions were selected by the subRVIS software. The pathogenicity of variants was evaluated by the American College of Medical Genetics and Genomics criteria. Articles on functional studies related to epilepsy for variants clustered protein domains were reviewed. In sub-regions of the DMD gene, two variants were identified in two unrelated cases with juvenile absence epilepsy or juvenile myoclonic epilepsy. The pathogenicity of both variants was uncertain significance. Allele frequency of both variants in probands with idiopathic generalized epilepsy reached statistical significance compared with the population (Fisher's test, p = 2.02 × 10<sup>-6</sup>, adjusted α = 4.52 × 10<sup>-6</sup>). The variants clustered in the spectrin domain of dystrophin, which binds to glycoprotein complexes and indirectly affects ion channels contributing to epileptogenesis. Gene sub-region analysis suggests a weak association between the DMD gene and idiopathic generalized epilepsy. Functional analysis of gene sub-region helps infer the pathogenesis of idiopathic generalized epilepsy.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-region analysis of DMD gene in cases with idiopathic generalized epilepsy.\",\"authors\":\"Zhi-Jian Lin,&nbsp;Bi-Xia Huang,&nbsp;Li-Fang Su,&nbsp;Sheng-Yin Zhu,&nbsp;Jun-Wei He,&nbsp;Guo-Zhang Chen,&nbsp;Peng-Xing Lin\",\"doi\":\"10.1007/s10048-023-00715-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene sub-region encoded protein domain is the basic unit for protein structure and function. The DMD gene is the largest coding gene in humans, with its phenotype relevant to idiopathic generalized epilepsy. We hypothesized variants clustered in sub-regions of idiopathic generalized epilepsy genes and investigated the relationship between the DMD gene and idiopathic generalized epilepsy. Whole exome sequencing was performed in 106 idiopathic generalized epilepsy individuals. DMD variants were filtered with variant type, allele frequency, in silico prediction, hemizygous or homozygous status in the population, inheritance mode, and domain location. Variants located at the sub-regions were selected by the subRVIS software. The pathogenicity of variants was evaluated by the American College of Medical Genetics and Genomics criteria. Articles on functional studies related to epilepsy for variants clustered protein domains were reviewed. In sub-regions of the DMD gene, two variants were identified in two unrelated cases with juvenile absence epilepsy or juvenile myoclonic epilepsy. The pathogenicity of both variants was uncertain significance. Allele frequency of both variants in probands with idiopathic generalized epilepsy reached statistical significance compared with the population (Fisher's test, p = 2.02 × 10<sup>-6</sup>, adjusted α = 4.52 × 10<sup>-6</sup>). The variants clustered in the spectrin domain of dystrophin, which binds to glycoprotein complexes and indirectly affects ion channels contributing to epileptogenesis. Gene sub-region analysis suggests a weak association between the DMD gene and idiopathic generalized epilepsy. Functional analysis of gene sub-region helps infer the pathogenesis of idiopathic generalized epilepsy.</p>\",\"PeriodicalId\":56106,\"journal\":{\"name\":\"Neurogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10048-023-00715-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-023-00715-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因亚区编码的蛋白质结构域是蛋白质结构和功能的基本单元。DMD基因是人类最大的编码基因,其表型与特发性全身性癫痫有关。我们假设变异聚集在特发性全身性癫痫基因的亚区,并研究DMD基因与特发性广泛性癫痫之间的关系。对106例特发性全身性癫痫患者进行了全外显子组测序。DMD变异通过变异类型、等位基因频率、计算机预测、群体中的半合子或纯合状态、遗传模式和结构域位置进行筛选。位于子区域的变体由subRVIS软件选择。变异株的致病性通过美国医学遗传学和基因组学学院的标准进行评估。综述了与癫痫相关的变异簇蛋白结构域功能研究的文章。在DMD基因的亚区中,在两例不相关的青少年失神性癫痫或青少年肌阵挛性癫痫病例中发现了两种变体。两种变体的致病性意义尚不确定。与人群相比,特发性全身性癫痫先证者两种变异的等位基因频率达到统计学显著性(Fisher检验,p = 2.02 × 10-6,调整后的α = 4.52 × 10-6)。这些变体聚集在肌营养不良蛋白的spectrin结构域,该结构域与糖蛋白复合物结合,并间接影响有助于癫痫发生的离子通道。基因亚区分析表明DMD基因与特发性全身性癫痫之间的相关性较弱。基因亚区的功能分析有助于推断特发性全身性癫痫的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-region analysis of DMD gene in cases with idiopathic generalized epilepsy.

Gene sub-region encoded protein domain is the basic unit for protein structure and function. The DMD gene is the largest coding gene in humans, with its phenotype relevant to idiopathic generalized epilepsy. We hypothesized variants clustered in sub-regions of idiopathic generalized epilepsy genes and investigated the relationship between the DMD gene and idiopathic generalized epilepsy. Whole exome sequencing was performed in 106 idiopathic generalized epilepsy individuals. DMD variants were filtered with variant type, allele frequency, in silico prediction, hemizygous or homozygous status in the population, inheritance mode, and domain location. Variants located at the sub-regions were selected by the subRVIS software. The pathogenicity of variants was evaluated by the American College of Medical Genetics and Genomics criteria. Articles on functional studies related to epilepsy for variants clustered protein domains were reviewed. In sub-regions of the DMD gene, two variants were identified in two unrelated cases with juvenile absence epilepsy or juvenile myoclonic epilepsy. The pathogenicity of both variants was uncertain significance. Allele frequency of both variants in probands with idiopathic generalized epilepsy reached statistical significance compared with the population (Fisher's test, p = 2.02 × 10-6, adjusted α = 4.52 × 10-6). The variants clustered in the spectrin domain of dystrophin, which binds to glycoprotein complexes and indirectly affects ion channels contributing to epileptogenesis. Gene sub-region analysis suggests a weak association between the DMD gene and idiopathic generalized epilepsy. Functional analysis of gene sub-region helps infer the pathogenesis of idiopathic generalized epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurogenetics
Neurogenetics 医学-临床神经学
CiteScore
3.90
自引率
0.00%
发文量
24
审稿时长
6 months
期刊介绍: Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry. All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.
期刊最新文献
The role of gut-derived short-chain fatty acids in Parkinson's disease Unraveling the three-dimensional (3D) genome architecture in Neurodevelopmental Disorders (NDDs). Genotypic and phenotypic analysis of Korean patients with tuberous sclerosis complex. Phenotype-genotype spectrum of a cohort of congenital muscular dystrophies: a single-centre experience from India. A novel variant in the GNE gene in a Malian patient presenting with distal myopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1