{"title":"肥厚型心肌病的新型治疗途径。","authors":"Dipti Patil, Lokesh Kumar Bhatt","doi":"10.1007/s40256-023-00609-1","DOIUrl":null,"url":null,"abstract":"<div><p>Hypertrophic cardiomyopathy (HCM) is a complicated, heterogeneous genetic condition that causes left ventricular hypertrophy, fibrosis, hypercontractility, and decreased compliance. Despite the advances made over the past 3 decades in understanding the molecular and cellular mechanisms aggravating HCM, the relationship between pathophysiological stress stimuli and distinctive myocyte growth profiles is still imprecise. Currently, mavacamten, a selective and reversible inhibitor of cardiac myosin ATPase, is the only drug approved by the US FDA for the treatment of HCM. Thus, there is an unmet need for developing novel disease-specific therapeutic approaches. This article provides an overview of emerging therapeutic targets for the treatment of HCM based on various molecular pathways and novel developments that are hopefully soon to enter the clinical study. These newly discovered targets include the dual specificity tyrosine-phosphorylation-regulated kinase 1B, the absence of the melanoma 1 inflammasome, the leucine-rich repeat kinase 2 enzyme, and the cluster of differentiation 147.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":7652,"journal":{"name":"American Journal of Cardiovascular Drugs","volume":"23 6","pages":"623 - 640"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Therapeutic Avenues for Hypertrophic Cardiomyopathy\",\"authors\":\"Dipti Patil, Lokesh Kumar Bhatt\",\"doi\":\"10.1007/s40256-023-00609-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hypertrophic cardiomyopathy (HCM) is a complicated, heterogeneous genetic condition that causes left ventricular hypertrophy, fibrosis, hypercontractility, and decreased compliance. Despite the advances made over the past 3 decades in understanding the molecular and cellular mechanisms aggravating HCM, the relationship between pathophysiological stress stimuli and distinctive myocyte growth profiles is still imprecise. Currently, mavacamten, a selective and reversible inhibitor of cardiac myosin ATPase, is the only drug approved by the US FDA for the treatment of HCM. Thus, there is an unmet need for developing novel disease-specific therapeutic approaches. This article provides an overview of emerging therapeutic targets for the treatment of HCM based on various molecular pathways and novel developments that are hopefully soon to enter the clinical study. These newly discovered targets include the dual specificity tyrosine-phosphorylation-regulated kinase 1B, the absence of the melanoma 1 inflammasome, the leucine-rich repeat kinase 2 enzyme, and the cluster of differentiation 147.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":7652,\"journal\":{\"name\":\"American Journal of Cardiovascular Drugs\",\"volume\":\"23 6\",\"pages\":\"623 - 640\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Cardiovascular Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40256-023-00609-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Cardiovascular Drugs","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s40256-023-00609-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Novel Therapeutic Avenues for Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a complicated, heterogeneous genetic condition that causes left ventricular hypertrophy, fibrosis, hypercontractility, and decreased compliance. Despite the advances made over the past 3 decades in understanding the molecular and cellular mechanisms aggravating HCM, the relationship between pathophysiological stress stimuli and distinctive myocyte growth profiles is still imprecise. Currently, mavacamten, a selective and reversible inhibitor of cardiac myosin ATPase, is the only drug approved by the US FDA for the treatment of HCM. Thus, there is an unmet need for developing novel disease-specific therapeutic approaches. This article provides an overview of emerging therapeutic targets for the treatment of HCM based on various molecular pathways and novel developments that are hopefully soon to enter the clinical study. These newly discovered targets include the dual specificity tyrosine-phosphorylation-regulated kinase 1B, the absence of the melanoma 1 inflammasome, the leucine-rich repeat kinase 2 enzyme, and the cluster of differentiation 147.
期刊介绍:
Promoting rational therapy within the discipline of cardiology, the American Journal of Cardiovascular Drugs covers all aspects of the treatment of cardiovascular disorders, particularly the place in therapy of newer and established agents.
Via a program of reviews and original clinical research articles, the journal addresses major issues relating to treatment of these disorders, including the pharmacology, efficacy and adverse effects of the major classes of drugs; information on newly developed drugs and drug classes; the therapeutic implications of latest research into the aetiology of cardiovascular disorders; and the practical management of specific clinical situations.
The American Journal of Cardiovascular Drugs offers a range of additional enhanced features designed to increase the visibility, readership and educational value of the journal’s content. Each article is accompanied by a Key Points summary, giving a time-efficient overview of the content to a wide readership. Articles may be accompanied by plain language summaries to assist patients, caregivers and others in understanding important medical advances. The journal also provides the option to include various other types of enhanced features including slide sets, videos and animations. All enhanced features are peer reviewed to the same high standard as the article itself. Peer review is conducted using Editorial Manager®, supported by a database of international experts. This database is shared with other Adis journals.