不可燃聚氟化物锚定准固体电解质用于无热失控的超安全无阳极锂袋电池。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2023-09-05 DOI:10.1002/adma.202304762
Anjun Hu, Wei Chen, Fei Li, Miao He, Dongjiang Chen, Yaoyao Li, Jun Zhu, Yichao Yan, Jianping Long, Yin Hu, Tianyu Lei, Baihai Li, Xianfu Wang, Jie Xiong
{"title":"不可燃聚氟化物锚定准固体电解质用于无热失控的超安全无阳极锂袋电池。","authors":"Anjun Hu,&nbsp;Wei Chen,&nbsp;Fei Li,&nbsp;Miao He,&nbsp;Dongjiang Chen,&nbsp;Yaoyao Li,&nbsp;Jun Zhu,&nbsp;Yichao Yan,&nbsp;Jianping Long,&nbsp;Yin Hu,&nbsp;Tianyu Lei,&nbsp;Baihai Li,&nbsp;Xianfu Wang,&nbsp;Jie Xiong","doi":"10.1002/adma.202304762","DOIUrl":null,"url":null,"abstract":"<p>The safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi-solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker. The quasi-solid system eliminates the inherent flammability of ether electrolytes with zero self-extinguishing time owing to the gas-phase radical capturing ability of HFBA. Additionally, the graphitized carbon layer generated during the decomposition of PETEA at high temperatures obstructs the heat and oxygen required for combustion. When coupled with Au-modified reduced graphene oxide anodic current collectors and lithium sulfide cathodes, the assembled anode-free Li-metal cell based on the quasi-solid electrolyte exhibits no signs of cell expansion or gas generation during cycling, and thermal runaway is eliminated under multiple mechanical, electrical, and thermal abuse scenarios and even rigorous strikes. This nonflammable quasi-solid configuration with gas- and condensed-phase flame-retardant mechanisms can drive a technological leap in anode-free Li-metal pouch cells and secure the practical applications necessary to power this society in a safe manner.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonflammable Polyfluorides-Anchored Quasi-Solid Electrolytes for Ultra-Safe Anode-Free Lithium Pouch Cells without Thermal Runaway\",\"authors\":\"Anjun Hu,&nbsp;Wei Chen,&nbsp;Fei Li,&nbsp;Miao He,&nbsp;Dongjiang Chen,&nbsp;Yaoyao Li,&nbsp;Jun Zhu,&nbsp;Yichao Yan,&nbsp;Jianping Long,&nbsp;Yin Hu,&nbsp;Tianyu Lei,&nbsp;Baihai Li,&nbsp;Xianfu Wang,&nbsp;Jie Xiong\",\"doi\":\"10.1002/adma.202304762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi-solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker. The quasi-solid system eliminates the inherent flammability of ether electrolytes with zero self-extinguishing time owing to the gas-phase radical capturing ability of HFBA. Additionally, the graphitized carbon layer generated during the decomposition of PETEA at high temperatures obstructs the heat and oxygen required for combustion. When coupled with Au-modified reduced graphene oxide anodic current collectors and lithium sulfide cathodes, the assembled anode-free Li-metal cell based on the quasi-solid electrolyte exhibits no signs of cell expansion or gas generation during cycling, and thermal runaway is eliminated under multiple mechanical, electrical, and thermal abuse scenarios and even rigorous strikes. This nonflammable quasi-solid configuration with gas- and condensed-phase flame-retardant mechanisms can drive a technological leap in anode-free Li-metal pouch cells and secure the practical applications necessary to power this society in a safe manner.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202304762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202304762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于多次发生火灾和爆炸事故,可充电电池的安全运行至关重要。然而,以金属锂(Li)为阳极的电池化学在易燃有机电解质中容易在滥用条件下发生热失控。本文提出了一种原位封装策略,通过自由基聚合六氟丙烯酸丁酯(HFBA)单体和四丙烯酸季戊四醇(PETEA)交联剂来构建不易燃的准固体电解质。准固体体系消除了乙醚电解质固有的可燃性,由于HFBA的气相自由基捕获能力,其自熄时间为零。此外,PETEA在高温下分解过程中产生的石墨化碳层阻碍了燃烧所需的热量和氧气。当与au修饰的还原氧化石墨烯阳极集流器和硫化锂阴极相结合时,基于准固体电解质组装的无阳极锂金属电池在循环过程中不会出现电池膨胀和气体产生的迹象,并且在多种机械、电气和热滥用情况下甚至严格打击下都可以消除热失控。这种不易燃的准固体结构具有气相和冷凝相阻燃机制,可以推动无阳极锂金属袋电池的技术飞跃,并确保以安全的方式为社会供电所需的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonflammable Polyfluorides-Anchored Quasi-Solid Electrolytes for Ultra-Safe Anode-Free Lithium Pouch Cells without Thermal Runaway

The safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi-solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker. The quasi-solid system eliminates the inherent flammability of ether electrolytes with zero self-extinguishing time owing to the gas-phase radical capturing ability of HFBA. Additionally, the graphitized carbon layer generated during the decomposition of PETEA at high temperatures obstructs the heat and oxygen required for combustion. When coupled with Au-modified reduced graphene oxide anodic current collectors and lithium sulfide cathodes, the assembled anode-free Li-metal cell based on the quasi-solid electrolyte exhibits no signs of cell expansion or gas generation during cycling, and thermal runaway is eliminated under multiple mechanical, electrical, and thermal abuse scenarios and even rigorous strikes. This nonflammable quasi-solid configuration with gas- and condensed-phase flame-retardant mechanisms can drive a technological leap in anode-free Li-metal pouch cells and secure the practical applications necessary to power this society in a safe manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cu-Atom Locations in Rocksalt SnTe Thermoelectric Alloy. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. Intertwined Flexoelectricity and Stacking Ferroelectricity in Marginally Twisted hBN Moiré Superlattice. Picometer-Level In Situ Manipulation of Ferroelectric Polarization in Van der Waals layered InSe. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1