自动机械剥离技术:YIG/TMD异质结构中的自旋泵浦研究。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2023-09-01 DOI:10.1039/D3NH00137G
Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia and Jorlandio Francisco Felix
{"title":"自动机械剥离技术:YIG/TMD异质结构中的自旋泵浦研究。","authors":"Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia and Jorlandio Francisco Felix","doi":"10.1039/D3NH00137G","DOIUrl":null,"url":null,"abstract":"<p >Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS<small><sub>2</sub></small> and MoSe<small><sub>2</sub></small>, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 1568-1576"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures†\",\"authors\":\"Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia and Jorlandio Francisco Felix\",\"doi\":\"10.1039/D3NH00137G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS<small><sub>2</sub></small> and MoSe<small><sub>2</sub></small>, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 11\",\"pages\":\" 1568-1576\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/nh/d3nh00137g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/nh/d3nh00137g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋电子学器件依赖于自旋电流的产生和操纵。二维过渡金属二硫族化合物(TMDs)是最有前途的自旋电流产生材料之一,因为在与磁性材料的界面处缺乏反转对称性。在此,我们报道了用一种简单快速的方法制备钇铁石榴石(YIG)/TMD异质结构。在通过磁控溅射生长磁绝缘体单晶YIG薄膜的同时,使用自动机械磨损方法将TMDs(即MoS2和MoSe2)直接沉积到YIG薄膜上。尽管该方法具有暴力方面,但它能产生高质量的接口,适用于自旋电子设备应用。通过铁磁共振测量了自旋电流密度和有效自旋混合电导,其值是文献中报道的最高值之一。我们的方法可以大规模生产铁磁材料/TMD异质结构,进一步提高了它们的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures†

Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS2 and MoSe2, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Unraveling energetics and states of adsorbing oxygen species with MoS2 for modulated work function. Back cover "Sweet MOFs": exploring the potential and restraints of integrating carbohydrates with metal-organic frameworks for biomedical applications. Extracellular vesicles of different cellular origin feature distinct biomolecular corona dynamics. Rhodium nanospheres for ultraviolet and visible plasmonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1