{"title":"新型抗SARS-CoV-2 Mpro酶配体的研制:硅化和体外研究","authors":"Navid Kaboudi, Nadine Krüger, Maryam Hamzeh-Mivehroud","doi":"10.1002/minf.202300120","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite tremendous efforts made by scientific community during the outbreak of COVID-19 pandemic, this disease still remains as a public health concern. Although different types of vaccines were globally used to reduce the mortality, emergence of new variants of SARS-CoV-2 is a challenging issue in COVID-19 pharmacotherapy. In this context, target therapy of SARS-CoV-2 by small ligands is a promising strategy.</p><p><strong>Methods: </strong>In this investigation, we applied ligand-based virtual screening for finding novel molecules based on nirmatrelvir structure. Various criteria including drug-likeness, ADME, and toxicity properties were applied for filtering the compounds. The selected candidate molecules were subjected to molecular docking and dynamics simulation for predicting the binding mode and binding free energy, respectively. Then the molecules were experimentally evaluated in terms of antiviral activity against SARS-CoV-2 and toxicity assessment.</p><p><strong>Results: </strong>The results demonstrated that the identified compounds showed inhibitory activity towards SARS-CoV-2 M<sup>pro</sup> .</p><p><strong>Conclusion: </strong>In summary, the introduced compounds may provide novel scaffold for further structural modification and optimization with improved anti SARS-CoV-2 M<sup>pro</sup> activity.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300120"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of novel ligands against SARS-CoV-2 M<sup>pro</sup> enzyme: an in silico and in vitro Study.\",\"authors\":\"Navid Kaboudi, Nadine Krüger, Maryam Hamzeh-Mivehroud\",\"doi\":\"10.1002/minf.202300120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite tremendous efforts made by scientific community during the outbreak of COVID-19 pandemic, this disease still remains as a public health concern. Although different types of vaccines were globally used to reduce the mortality, emergence of new variants of SARS-CoV-2 is a challenging issue in COVID-19 pharmacotherapy. In this context, target therapy of SARS-CoV-2 by small ligands is a promising strategy.</p><p><strong>Methods: </strong>In this investigation, we applied ligand-based virtual screening for finding novel molecules based on nirmatrelvir structure. Various criteria including drug-likeness, ADME, and toxicity properties were applied for filtering the compounds. The selected candidate molecules were subjected to molecular docking and dynamics simulation for predicting the binding mode and binding free energy, respectively. Then the molecules were experimentally evaluated in terms of antiviral activity against SARS-CoV-2 and toxicity assessment.</p><p><strong>Results: </strong>The results demonstrated that the identified compounds showed inhibitory activity towards SARS-CoV-2 M<sup>pro</sup> .</p><p><strong>Conclusion: </strong>In summary, the introduced compounds may provide novel scaffold for further structural modification and optimization with improved anti SARS-CoV-2 M<sup>pro</sup> activity.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300120\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300120\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300120","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Development of novel ligands against SARS-CoV-2 Mpro enzyme: an in silico and in vitro Study.
Background: Despite tremendous efforts made by scientific community during the outbreak of COVID-19 pandemic, this disease still remains as a public health concern. Although different types of vaccines were globally used to reduce the mortality, emergence of new variants of SARS-CoV-2 is a challenging issue in COVID-19 pharmacotherapy. In this context, target therapy of SARS-CoV-2 by small ligands is a promising strategy.
Methods: In this investigation, we applied ligand-based virtual screening for finding novel molecules based on nirmatrelvir structure. Various criteria including drug-likeness, ADME, and toxicity properties were applied for filtering the compounds. The selected candidate molecules were subjected to molecular docking and dynamics simulation for predicting the binding mode and binding free energy, respectively. Then the molecules were experimentally evaluated in terms of antiviral activity against SARS-CoV-2 and toxicity assessment.
Results: The results demonstrated that the identified compounds showed inhibitory activity towards SARS-CoV-2 Mpro .
Conclusion: In summary, the introduced compounds may provide novel scaffold for further structural modification and optimization with improved anti SARS-CoV-2 Mpro activity.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.