如何构建认知地图?大脑空间表征电路和计算的发展。

IF 12.1 1区 医学 Q1 NEUROSCIENCES Annual review of neuroscience Pub Date : 2023-07-10 DOI:10.1146/annurev-neuro-090922-010618
Flavio Donato, Anja Xu Schwartzlose, Renan Augusto Viana Mendes
{"title":"如何构建认知地图?大脑空间表征电路和计算的发展。","authors":"Flavio Donato,&nbsp;Anja Xu Schwartzlose,&nbsp;Renan Augusto Viana Mendes","doi":"10.1146/annurev-neuro-090922-010618","DOIUrl":null,"url":null,"abstract":"<p><p>In mammals, the activity of neurons in the entorhinal-hippocampal network is modulated by the animal's position and its movement through space. At multiple stages of this distributed circuit, distinct populations of neurons can represent a rich repertoire of navigation-related variables like the animal's location, the speed and direction of its movements, or the presence of borders and objects. Working together, spatially tuned neurons give rise to an internal representation of space, a cognitive map that supports an animal's ability to navigate the world and to encode and consolidate memories from experience. The mechanisms by which, during development, the brain acquires the ability to create an internal representation of space are just beginning to be elucidated. In this review, we examine recent work that has begun to investigate the ontogeny of circuitry, firing patterns, and computations underpinning the representation of space in the mammalian brain.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"281-299"},"PeriodicalIF":12.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Do You Build a Cognitive Map? The Development of Circuits and Computations for the Representation of Space in the Brain.\",\"authors\":\"Flavio Donato,&nbsp;Anja Xu Schwartzlose,&nbsp;Renan Augusto Viana Mendes\",\"doi\":\"10.1146/annurev-neuro-090922-010618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In mammals, the activity of neurons in the entorhinal-hippocampal network is modulated by the animal's position and its movement through space. At multiple stages of this distributed circuit, distinct populations of neurons can represent a rich repertoire of navigation-related variables like the animal's location, the speed and direction of its movements, or the presence of borders and objects. Working together, spatially tuned neurons give rise to an internal representation of space, a cognitive map that supports an animal's ability to navigate the world and to encode and consolidate memories from experience. The mechanisms by which, during development, the brain acquires the ability to create an internal representation of space are just beginning to be elucidated. In this review, we examine recent work that has begun to investigate the ontogeny of circuitry, firing patterns, and computations underpinning the representation of space in the mammalian brain.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"46 \",\"pages\":\"281-299\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-090922-010618\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-090922-010618","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在哺乳动物中,内嗅-海马体网络神经元的活动是由动物的位置和空间运动来调节的。在这个分布式回路的多个阶段,不同的神经元群可以代表丰富的与导航相关的变量,比如动物的位置、运动的速度和方向,或者边界和物体的存在。协同工作,空间调谐神经元产生了对空间的内部表征,这是一幅认知地图,支持动物导航世界的能力,以及从经验中编码和巩固记忆的能力。在发育过程中,大脑获得创造空间内部表征能力的机制才刚刚开始被阐明。在这篇综述中,我们研究了最近开始研究哺乳动物大脑中空间表征基础的电路、放电模式和计算的个体发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Do You Build a Cognitive Map? The Development of Circuits and Computations for the Representation of Space in the Brain.

In mammals, the activity of neurons in the entorhinal-hippocampal network is modulated by the animal's position and its movement through space. At multiple stages of this distributed circuit, distinct populations of neurons can represent a rich repertoire of navigation-related variables like the animal's location, the speed and direction of its movements, or the presence of borders and objects. Working together, spatially tuned neurons give rise to an internal representation of space, a cognitive map that supports an animal's ability to navigate the world and to encode and consolidate memories from experience. The mechanisms by which, during development, the brain acquires the ability to create an internal representation of space are just beginning to be elucidated. In this review, we examine recent work that has begun to investigate the ontogeny of circuitry, firing patterns, and computations underpinning the representation of space in the mammalian brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
期刊最新文献
A Whole-Brain Topographic Ontology. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Predictive Processing: A Circuit Approach to Psychosis. Neural Control of Naturalistic Behavior Choices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1