双臂触觉硬膜外插针模拟器的设计与评估

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2023-09-07 DOI:10.1109/TOH.2023.3312666
Nitsan Davidor;Yair Binyamin;Tamar Hayuni Kosovsky;Ilana Nisky
{"title":"双臂触觉硬膜外插针模拟器的设计与评估","authors":"Nitsan Davidor;Yair Binyamin;Tamar Hayuni Kosovsky;Ilana Nisky","doi":"10.1109/TOH.2023.3312666","DOIUrl":null,"url":null,"abstract":"The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"16 4","pages":"736-747"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Assessment of a Bimanual Haptic Epidural Needle Insertion Simulator\",\"authors\":\"Nitsan Davidor;Yair Binyamin;Tamar Hayuni Kosovsky;Ilana Nisky\",\"doi\":\"10.1109/TOH.2023.3312666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"16 4\",\"pages\":\"736-747\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10243089/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10243089/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

麻醉医师的病例经验是导致意外硬膜穿刺和硬膜外麻醉失败的主要原因之一,而硬膜外麻醉是分娩镇痛最常见的并发症。我们设计了一种双臂触觉模拟器来培训麻醉医师并优化硬膜外镇痛技能的掌握。我们对来自以色列多家医院的 22 名不同能力水平的麻醉师进行了评估研究。我们的模拟器模拟了一只手握住硬膜外(Touhy)针和另一只手握住失去阻力(LOR)注射器所受的力。阻力是根据硬膜外区域层的模型计算出来的,该模型以病人的体重为参数。我们测量了两个触觉装置的动作,并量化了结果率(硬膜外麻醉的成功率、失败率和硬膜穿刺率)、插入策略以及参与者对模拟逼真度感知问卷的回答。我们通过证明模拟器能够区分现实生活中的新手和专家,证明了其良好的构造效度。通过研究用户对模拟器的真实性和目的性的印象,我们检验了表面效度和内容效度。我们发现不同级别的麻醉师在策略上存在差异,因此建议在高级培训阶段采用以学员为基础的教学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Assessment of a Bimanual Haptic Epidural Needle Insertion Simulator
The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
A Novel Ungrounded Haptic Device for Generation and Orientation of Force and Torque Feedbacks. HM-Array: A Novel Haptic Magnetism-based Leader-follower Platform for Minimally Invasive Robotic Surgery. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. A Visuo-Haptic System for Nodule Detection Training: Insights from EEG and behavioral analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1