Giorgio Cignarale, Ulrich Schmid, Tuomas Tahko, Roman Kuznets
{"title":"先验信念在容错分布式系统设计和分析中的作用。","authors":"Giorgio Cignarale, Ulrich Schmid, Tuomas Tahko, Roman Kuznets","doi":"10.1007/s11023-023-09631-3","DOIUrl":null,"url":null,"abstract":"<p><p>The debate around the notions of a priori knowledge and a posteriori knowledge has proven crucial for the development of many fields in philosophy, such as metaphysics, epistemology, metametaphysics etc. We advocate that the recent debate on the two notions is also fruitful for man-made distributed computing systems and for the epistemic analysis thereof. Following a recently proposed modal and fallibilistic account of a priori knowledge, we elaborate the corresponding concept of a priori belief: We propose a rich taxonomy of types of a priori beliefs and their role for the different agents that participate in the system engineering process, which match the existing view exceedingly well and are particularly promising for explaining and dealing with unexpected behaviors in fault-tolerant distributed systems. Developing such a philosophical foundation will provide a sound basis for eventually implementing our ideas in a suitable epistemic reasoning and analysis framework and, hence, constitutes a mandatory first step for developing methods and tools to cope with the various challenges that emerge in such systems.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":"33 2","pages":"293-319"},"PeriodicalIF":4.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345063/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of A Priori Belief in the Design and Analysis of Fault-Tolerant Distributed Systems.\",\"authors\":\"Giorgio Cignarale, Ulrich Schmid, Tuomas Tahko, Roman Kuznets\",\"doi\":\"10.1007/s11023-023-09631-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The debate around the notions of a priori knowledge and a posteriori knowledge has proven crucial for the development of many fields in philosophy, such as metaphysics, epistemology, metametaphysics etc. We advocate that the recent debate on the two notions is also fruitful for man-made distributed computing systems and for the epistemic analysis thereof. Following a recently proposed modal and fallibilistic account of a priori knowledge, we elaborate the corresponding concept of a priori belief: We propose a rich taxonomy of types of a priori beliefs and their role for the different agents that participate in the system engineering process, which match the existing view exceedingly well and are particularly promising for explaining and dealing with unexpected behaviors in fault-tolerant distributed systems. Developing such a philosophical foundation will provide a sound basis for eventually implementing our ideas in a suitable epistemic reasoning and analysis framework and, hence, constitutes a mandatory first step for developing methods and tools to cope with the various challenges that emerge in such systems.</p>\",\"PeriodicalId\":51133,\"journal\":{\"name\":\"Minds and Machines\",\"volume\":\"33 2\",\"pages\":\"293-319\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minds and Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11023-023-09631-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-023-09631-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Role of A Priori Belief in the Design and Analysis of Fault-Tolerant Distributed Systems.
The debate around the notions of a priori knowledge and a posteriori knowledge has proven crucial for the development of many fields in philosophy, such as metaphysics, epistemology, metametaphysics etc. We advocate that the recent debate on the two notions is also fruitful for man-made distributed computing systems and for the epistemic analysis thereof. Following a recently proposed modal and fallibilistic account of a priori knowledge, we elaborate the corresponding concept of a priori belief: We propose a rich taxonomy of types of a priori beliefs and their role for the different agents that participate in the system engineering process, which match the existing view exceedingly well and are particularly promising for explaining and dealing with unexpected behaviors in fault-tolerant distributed systems. Developing such a philosophical foundation will provide a sound basis for eventually implementing our ideas in a suitable epistemic reasoning and analysis framework and, hence, constitutes a mandatory first step for developing methods and tools to cope with the various challenges that emerge in such systems.
期刊介绍:
Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science.
Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios.
By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.