{"title":"基于时延最大信息谱系数的皮质-肌皮质功能网络分析。","authors":"Jianpeng Tang, Xugang Xi, Ting Wang, Junhong Wang, Lihua Li, Zhong Lü","doi":"10.1088/1741-2552/acf7f7","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.<i>Approach</i>. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.<i>Main result</i>. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.<i>Significance</i>. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of corticomuscular-cortical functional network based on time-delayed maximal information spectral coefficient.\",\"authors\":\"Jianpeng Tang, Xugang Xi, Ting Wang, Junhong Wang, Lihua Li, Zhong Lü\",\"doi\":\"10.1088/1741-2552/acf7f7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.<i>Approach</i>. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.<i>Main result</i>. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.<i>Significance</i>. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/acf7f7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf7f7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of corticomuscular-cortical functional network based on time-delayed maximal information spectral coefficient.
Objective. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.Approach. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.Main result. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.Significance. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.