Yaniv Mayer DMD, Juan Khoury DMD, Jacob Horwitz, Ofir Ginesin MSc, Luigi Canullo PhD, Eran Gabay PhD, Hadar Z. Giladi PhD
{"title":"聚焦脉冲电磁场治疗种植体周围炎的一种新的非手术治疗方法:一项随机双盲对照临床试验。","authors":"Yaniv Mayer DMD, Juan Khoury DMD, Jacob Horwitz, Ofir Ginesin MSc, Luigi Canullo PhD, Eran Gabay PhD, Hadar Z. Giladi PhD","doi":"10.1002/bem.22481","DOIUrl":null,"url":null,"abstract":"<p>Pulsed electromagnetic field (PEMF) therapy modulates the immune response and is successfully used in orthopedics to treat osteoarthritis and improve bone regeneration. This may suggest that this treatment may consequently reduce peri-implant soft tissue inflammation and marginal bone loss. To compare clinical, radiographic, and immunological results following nonsurgical treatment for peri-implantitis with or without PEMF therapy. Patients with peri-implantitis were included: pocket probing depth (PPD) between 6 and 8 mm with bleeding on probing (BOP); crestal bone loss between 3 and 5 mm. A novel healing abutment that contained active (test) or inactive (control) PEMF was connected. PEMF was administered via the abutment at exposure ratio of 1/500–1/5000, intensity: 0.05–0.5 mT, frequency: 10–50 kHz for 30 days. Nonsurgical mechanical implant surface debridement was performed. Patients were examined at baseline, 1 and 3 months. Clinical assessment included: plaque index, BOP, PPD, recession, and bone crest level which was radiography measured. Samples of peri-implant crevicular fluid were taken to analyze interleukin-1β (IL-1β). Twenty-three patients (34 implants; 19 control, 15 test) were included. At the follow-up, mean crestal bone loss was lower in the test group at 1 and 3 months (2.48 mm vs. 3.73 mm, <i>p</i> < 0.05 and 2.39 vs. 3.37, <i>p</i> < 0.01). IL-1β levels were also lower in the test group at 2 weeks (72.86 pg/mL vs. 111.7, <i>p</i> < 0.05). Within all the limitation of this preliminary study, the test group improved clinical parameters after a short-term period compared to the control group.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22481","citationCount":"0","resultStr":"{\"title\":\"A novel nonsurgical therapy for peri-implantitis using focused pulsed electromagnetic field: A pilot randomized double-blind controlled clinical trial\",\"authors\":\"Yaniv Mayer DMD, Juan Khoury DMD, Jacob Horwitz, Ofir Ginesin MSc, Luigi Canullo PhD, Eran Gabay PhD, Hadar Z. Giladi PhD\",\"doi\":\"10.1002/bem.22481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pulsed electromagnetic field (PEMF) therapy modulates the immune response and is successfully used in orthopedics to treat osteoarthritis and improve bone regeneration. This may suggest that this treatment may consequently reduce peri-implant soft tissue inflammation and marginal bone loss. To compare clinical, radiographic, and immunological results following nonsurgical treatment for peri-implantitis with or without PEMF therapy. Patients with peri-implantitis were included: pocket probing depth (PPD) between 6 and 8 mm with bleeding on probing (BOP); crestal bone loss between 3 and 5 mm. A novel healing abutment that contained active (test) or inactive (control) PEMF was connected. PEMF was administered via the abutment at exposure ratio of 1/500–1/5000, intensity: 0.05–0.5 mT, frequency: 10–50 kHz for 30 days. Nonsurgical mechanical implant surface debridement was performed. Patients were examined at baseline, 1 and 3 months. Clinical assessment included: plaque index, BOP, PPD, recession, and bone crest level which was radiography measured. Samples of peri-implant crevicular fluid were taken to analyze interleukin-1β (IL-1β). Twenty-three patients (34 implants; 19 control, 15 test) were included. At the follow-up, mean crestal bone loss was lower in the test group at 1 and 3 months (2.48 mm vs. 3.73 mm, <i>p</i> < 0.05 and 2.39 vs. 3.37, <i>p</i> < 0.01). IL-1β levels were also lower in the test group at 2 weeks (72.86 pg/mL vs. 111.7, <i>p</i> < 0.05). Within all the limitation of this preliminary study, the test group improved clinical parameters after a short-term period compared to the control group.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22481\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22481","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
脉冲电磁场(PEMF)疗法调节免疫反应,并成功地用于骨科治疗骨关节炎和促进骨再生。这可能表明这种治疗可以减少种植体周围软组织炎症和边缘骨质流失。比较采用或不采用PEMF治疗的非手术治疗种植体周围炎的临床、影像学和免疫学结果。植入物周围炎患者包括:囊探查深度(PPD)在6 ~ 8mm之间,探查时出血(BOP);牙冠骨质流失3至5毫米。连接一种含有活性(测试)或非活性(对照)PEMF的新型愈合基台。通过基台给予PEMF,暴露比为1/500-1/5000,强度为0.05-0.5 mT,频率为10-50 kHz,持续30天。进行非手术机械种植体表面清创。分别在基线、1个月和3个月对患者进行检查。临床评估包括:斑块指数、BOP、PPD、衰退、胸片测量的骨嵴水平。取种植体周围沟液检测白细胞介素-1β (IL-1β)水平。23例患者(34枚植入物;对照组19例,试验组15例。在随访中,实验组在1个月和3个月的平均牙冠骨质流失较低(2.48 mm vs. 3.73 mm, p
A novel nonsurgical therapy for peri-implantitis using focused pulsed electromagnetic field: A pilot randomized double-blind controlled clinical trial
Pulsed electromagnetic field (PEMF) therapy modulates the immune response and is successfully used in orthopedics to treat osteoarthritis and improve bone regeneration. This may suggest that this treatment may consequently reduce peri-implant soft tissue inflammation and marginal bone loss. To compare clinical, radiographic, and immunological results following nonsurgical treatment for peri-implantitis with or without PEMF therapy. Patients with peri-implantitis were included: pocket probing depth (PPD) between 6 and 8 mm with bleeding on probing (BOP); crestal bone loss between 3 and 5 mm. A novel healing abutment that contained active (test) or inactive (control) PEMF was connected. PEMF was administered via the abutment at exposure ratio of 1/500–1/5000, intensity: 0.05–0.5 mT, frequency: 10–50 kHz for 30 days. Nonsurgical mechanical implant surface debridement was performed. Patients were examined at baseline, 1 and 3 months. Clinical assessment included: plaque index, BOP, PPD, recession, and bone crest level which was radiography measured. Samples of peri-implant crevicular fluid were taken to analyze interleukin-1β (IL-1β). Twenty-three patients (34 implants; 19 control, 15 test) were included. At the follow-up, mean crestal bone loss was lower in the test group at 1 and 3 months (2.48 mm vs. 3.73 mm, p < 0.05 and 2.39 vs. 3.37, p < 0.01). IL-1β levels were also lower in the test group at 2 weeks (72.86 pg/mL vs. 111.7, p < 0.05). Within all the limitation of this preliminary study, the test group improved clinical parameters after a short-term period compared to the control group.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.