基于图的深度学习预测纵向婴儿弥散MRI数据。

Jaeil Kim, Yoonmi Hong, Geng Chen, Weili Lin, Pew-Thian Yap, Dinggang Shen
{"title":"基于图的深度学习预测纵向婴儿弥散MRI数据。","authors":"Jaeil Kim,&nbsp;Yoonmi Hong,&nbsp;Geng Chen,&nbsp;Weili Lin,&nbsp;Pew-Thian Yap,&nbsp;Dinggang Shen","doi":"10.1007/978-3-030-05831-9_11","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion MRI affords great value for studying brain development, owing to its capability in assessing brain microstructure in association with myelination. With longitudinally acquired pediatric diffusion MRI data, one can chart the temporal evolution of microstructure and white matter connectivity. However, due to subject dropouts and unsuccessful scans, longitudinal datasets are often incomplete. In this work, we introduce a graph-based deep learning approach to predict diffusion MRI data. The relationships between sampling points in spatial domain (x-space) and diffusion wave-vector domain (q-space) are harnessed jointly (x-q space) in the form of a graph. We then implement a residual learning architecture with graph convolution filtering to learn longitudinal changes of diffusion MRI data along time. We evaluate the effectiveness of the spatial and angular components in data prediction. We also investigate the longitudinal trajectories in terms of diffusion scalars computed based on the predicted datasets.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2019 ","pages":"133-141"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-05831-9_11","citationCount":"6","resultStr":"{\"title\":\"Graph-Based Deep Learning for Prediction of Longitudinal Infant Diffusion MRI Data.\",\"authors\":\"Jaeil Kim,&nbsp;Yoonmi Hong,&nbsp;Geng Chen,&nbsp;Weili Lin,&nbsp;Pew-Thian Yap,&nbsp;Dinggang Shen\",\"doi\":\"10.1007/978-3-030-05831-9_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion MRI affords great value for studying brain development, owing to its capability in assessing brain microstructure in association with myelination. With longitudinally acquired pediatric diffusion MRI data, one can chart the temporal evolution of microstructure and white matter connectivity. However, due to subject dropouts and unsuccessful scans, longitudinal datasets are often incomplete. In this work, we introduce a graph-based deep learning approach to predict diffusion MRI data. The relationships between sampling points in spatial domain (x-space) and diffusion wave-vector domain (q-space) are harnessed jointly (x-q space) in the form of a graph. We then implement a residual learning architecture with graph convolution filtering to learn longitudinal changes of diffusion MRI data along time. We evaluate the effectiveness of the spatial and angular components in data prediction. We also investigate the longitudinal trajectories in terms of diffusion scalars computed based on the predicted datasets.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2019 \",\"pages\":\"133-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-05831-9_11\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-05831-9_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-05831-9_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于弥散MRI能够评估与髓鞘形成相关的大脑微观结构,因此在研究大脑发育方面具有重要价值。通过纵向获取的儿童弥散MRI数据,可以绘制出微结构和白质连通性的时间演变图。然而,由于受试者退出和不成功的扫描,纵向数据集往往是不完整的。在这项工作中,我们引入了一种基于图的深度学习方法来预测扩散MRI数据。将采样点在空间域(x空间)和扩散波矢量域(q空间)之间的关系以图的形式联合利用(x-q空间)。然后,我们实现了一个带有图卷积滤波的残差学习架构来学习扩散MRI数据随时间的纵向变化。我们评估了空间分量和角度分量在数据预测中的有效性。我们还研究了基于预测数据集计算的扩散标量的纵向轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-Based Deep Learning for Prediction of Longitudinal Infant Diffusion MRI Data.

Diffusion MRI affords great value for studying brain development, owing to its capability in assessing brain microstructure in association with myelination. With longitudinally acquired pediatric diffusion MRI data, one can chart the temporal evolution of microstructure and white matter connectivity. However, due to subject dropouts and unsuccessful scans, longitudinal datasets are often incomplete. In this work, we introduce a graph-based deep learning approach to predict diffusion MRI data. The relationships between sampling points in spatial domain (x-space) and diffusion wave-vector domain (q-space) are harnessed jointly (x-q space) in the form of a graph. We then implement a residual learning architecture with graph convolution filtering to learn longitudinal changes of diffusion MRI data along time. We evaluate the effectiveness of the spatial and angular components in data prediction. We also investigate the longitudinal trajectories in terms of diffusion scalars computed based on the predicted datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1