首页 > 最新文献

Computational diffusion MRI : MICCAI Workshop最新文献

英文 中文
QID2: An Image-Conditioned Diffusion Model for Q-space Up-sampling of DWI Data. QID2: DWI数据q空间上采样的图像条件扩散模型。
Pub Date : 2025-01-01 Epub Date: 2025-04-18 DOI: 10.1007/978-3-031-86920-4_11
Zijian Chen, Jueqi Wang, Archana Venkataraman

We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID2, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID2 on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID2 to reconstruct the missing high angular resolution samples. We compare QID2 with two state-of-the-art GAN models. Our results demonstrate that QID2 not only achieves higher-quality generated images, but it consistently outperforms state-of-the-art baseline methods in downstream tensor estimation across multiple metrics and in generalizing to downsampling scenario during testing. Taken together, this study highlights the potential of diffusion models, and QID2 in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.

我们提出了一个图像条件扩散模型,从低角分辨率采集估计高角分辨率扩散加权成像(DWI)。我们称之为QID2的模型将一组低角度分辨率的DWI数据作为输入,并使用该信息来估计与目标梯度方向相关的DWI数据。我们利用交叉关注的U-Net架构来保留参考图像的位置信息,进一步指导目标图像的生成。我们在人类连接组项目(Human Connectome Project, HCP)数据集中的单壳DWI样本上训练和评估QID2。具体来说,我们对HCP梯度方向进行子采样以产生低角分辨率DWI数据,并训练QID2来重建缺失的高角分辨率样本。我们将QID2与两种最先进的GAN模型进行比较。我们的研究结果表明,QID2不仅实现了更高质量的生成图像,而且在跨多个指标的下游张量估计以及在测试期间推广到下采样场景时,它始终优于最先进的基线方法。综上所述,本研究强调了扩散模型,特别是QID2在q空间上采样方面的潜力,从而为临床和研究应用提供了一个有前途的工具包。
{"title":"QID<sup>2</sup>: An Image-Conditioned Diffusion Model for <i>Q</i>-space Up-sampling of DWI Data.","authors":"Zijian Chen, Jueqi Wang, Archana Venkataraman","doi":"10.1007/978-3-031-86920-4_11","DOIUrl":"10.1007/978-3-031-86920-4_11","url":null,"abstract":"<p><p>We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID<sup>2</sup>, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID<sup>2</sup> on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID<sup>2</sup> to reconstruct the missing high angular resolution samples. We compare QID<sup>2</sup> with two state-of-the-art GAN models. Our results demonstrate that QID<sup>2</sup> not only achieves higher-quality generated images, but it consistently outperforms state-of-the-art baseline methods in downstream tensor estimation across multiple metrics and in generalizing to downsampling scenario during testing. Taken together, this study highlights the potential of diffusion models, and QID<sup>2</sup> in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"15171 ","pages":"119-131"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing QuantConn: Overcoming challenging diffusion acquisitions with harmonization. 介绍QuantConn:用协调克服具有挑战性的扩散获取。
Pub Date : 2025-01-01 Epub Date: 2025-04-18 DOI: 10.1007/978-3-031-86920-4_15
Nancy R Newlin, Kurt Schilling, Serge Koudoro, Bramsh Qamar Chandio, Praitayini Kanakaraj, Daniel Moyer, Claire E Kelly, Sila Genc, Joseph Yuan-Mou Yang, Ye Wu, Nagesh Adluru, Vishwesh Nath, Sudhir Pathak, Walter Schneider, Anurag Gade, William Consagra, Yogesh Rathi, Tom Hendriks, Anna Vilanova, Maxime Chamberland, Tomasz Pieciak, Dominika Ciupek, Antonio Tristán Vega, Santiago Aja-Fernández, Maciej Malawski, Gani Ouedraogo, Julia Machnio, Paul M Thompson, Neda Jahanshad, Eleftherios Garyfallidis, Bennett Landman

White matter alterations are increasingly implicated in neurological diseases and their progression. Diffusion-weighted magnetic resonance imaging (DW-MRI) has been included in many international-scale studies to identify alterations in white matter microstructure and connectivity. Yet, quantitative investigation of DW-MRI data is hindered by a lack of consistency due to variations in acquisition protocols, sites, and scanners. Specifically, there is a need to harmonize the preprocessing of DW-MRI datasets to ensure that compatible and reproducible quantitative metrics are derived from each site, including (1) bundle-wise microstructure measures, (2) features of white matter fiber bundles, and (3) connectomics measures. In the MICCAI CDMRI 2023 QuantConn challenge, participants are provided raw data from the same individuals taken with two different acquisition protocols on a single 4 tesla scanner in the same scanning session and asked to preprocess the data in order to minimize acquisition differences while retaining biological variation. Here, we outline the testing framework, provide baseline pre-harmonized results, and discuss the learning implications of this challenge.

白质改变越来越多地与神经系统疾病及其进展有关。扩散加权磁共振成像(DW-MRI)已被纳入许多国际规模的研究,以确定白质微观结构和连通性的变化。然而,由于采集方案、地点和扫描仪的差异,DW-MRI数据的定量调查受到缺乏一致性的阻碍。具体来说,需要协调DW-MRI数据集的预处理,以确保从每个位点获得兼容和可重复的定量指标,包括(1)束方向的微观结构测量,(2)白质纤维束的特征,以及(3)连接组测量。在MICCAI CDMRI 2023 QuantConn挑战赛中,研究人员向参与者提供了来自同一个体的原始数据,这些数据是在同一扫描过程中,在一台4特斯拉扫描仪上用两种不同的采集协议采集的,并要求他们对数据进行预处理,以尽量减少采集差异,同时保留生物变异。在这里,我们概述了测试框架,提供了基线预协调结果,并讨论了这一挑战的学习含义。
{"title":"Introducing QuantConn: Overcoming challenging diffusion acquisitions with harmonization.","authors":"Nancy R Newlin, Kurt Schilling, Serge Koudoro, Bramsh Qamar Chandio, Praitayini Kanakaraj, Daniel Moyer, Claire E Kelly, Sila Genc, Joseph Yuan-Mou Yang, Ye Wu, Nagesh Adluru, Vishwesh Nath, Sudhir Pathak, Walter Schneider, Anurag Gade, William Consagra, Yogesh Rathi, Tom Hendriks, Anna Vilanova, Maxime Chamberland, Tomasz Pieciak, Dominika Ciupek, Antonio Tristán Vega, Santiago Aja-Fernández, Maciej Malawski, Gani Ouedraogo, Julia Machnio, Paul M Thompson, Neda Jahanshad, Eleftherios Garyfallidis, Bennett Landman","doi":"10.1007/978-3-031-86920-4_15","DOIUrl":"10.1007/978-3-031-86920-4_15","url":null,"abstract":"<p><p>White matter alterations are increasingly implicated in neurological diseases and their progression. Diffusion-weighted magnetic resonance imaging (DW-MRI) has been included in many international-scale studies to identify alterations in white matter microstructure and connectivity. Yet, quantitative investigation of DW-MRI data is hindered by a lack of consistency due to variations in acquisition protocols, sites, and scanners. Specifically, there is a need to harmonize the preprocessing of DW-MRI datasets to ensure that compatible and reproducible quantitative metrics are derived from each site, including (1) bundle-wise microstructure measures, (2) features of white matter fiber bundles, and (3) connectomics measures. In the MICCAI CDMRI 2023 QuantConn challenge, participants are provided raw data from the same individuals taken with two different acquisition protocols on a single 4 tesla scanner in the same scanning session and asked to preprocess the data in order to minimize acquisition differences while retaining biological variation. Here, we outline the testing framework, provide baseline pre-harmonized results, and discuss the learning implications of this challenge.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"15171 ","pages":"164-174"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145835403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. FASSt:通过对称自动编码器对球形表层白质分层图进行过滤。
Pub Date : 2023-10-01 Epub Date: 2024-02-07 DOI: 10.1007/978-3-031-47292-3_12
Yuan Li, Xinyu Nie, Yao Fu, Yonggang Shi

Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.

表层白质(SWM)在人脑功能中发挥着重要作用,它包含大量皮质-皮质连接。然而,由于难以生成完整可靠的 U 纤维,表层白质相关分析落后于相对成熟的深层白质(DWM)分析。借助一些新提出的基于表面的 SWM 牵引成像算法,我们开发了一种基于对称变异自动编码器(VAE)的专门 SWM 滤波方法。在这项工作中,我们首先展示了球面表示法的优势,并使用三角形网格和注册的球面生成这些球面牵引。然后,我们介绍了通过对称自动编码器进行球形表层白质束成像过滤(FASSt)框架,该框架具有一个新颖的对称权重模块,可在潜空间中执行过滤任务。我们在人类连接组计划(HCP)的弥散核磁共振成像数据上评估并比较了我们的方法和最先进的基于聚类的方法。结果表明,我们提出的方法优于这些聚类方法,并在分组一致性和拓扑规则性方面取得了优异的表现。
{"title":"FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography.","authors":"Yuan Li, Xinyu Nie, Yao Fu, Yonggang Shi","doi":"10.1007/978-3-031-47292-3_12","DOIUrl":"10.1007/978-3-031-47292-3_12","url":null,"abstract":"<p><p>Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"129-139"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. 用于腹部 DW-MRI 的自监督去噪扩散概率模型
Pub Date : 2023-10-01 DOI: 10.1007/978-3-031-47292-3_8
Serge Vasylechko, Onur Afacan, Sila Kurugol

Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM.

腹部定量弥散加权磁共振成像可提供重要的疾病标记,但其精确计算存在很大的局限性。其中一个限制是信噪比低,尤其是在高扩散 b 值时。为了解决这个问题,可以在每个 b 值处采集多个扩散方向图像并进行几何平均,但这必然会导致扫描时间延长、运动造成的模糊和其他伪影。我们提出了一种基于自我监督扩散去噪概率模型的新型参数估计技术,它能有效地对扩散加权图像进行去噪,并可用于单扩散梯度方向图像。我们的源代码可在 https://github.com/quin-med-harvard-edu/ssDDPM 上获取。
{"title":"Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI.","authors":"Serge Vasylechko, Onur Afacan, Sila Kurugol","doi":"10.1007/978-3-031-47292-3_8","DOIUrl":"10.1007/978-3-031-47292-3_8","url":null,"abstract":"<p><p>Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"80-91"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion phantom study of fiber crossings at varied angles reconstructed with ODF-Fingerprinting. 用odf指纹法重建不同角度纤维交叉点的扩散模体研究。
Pub Date : 2023-01-01 Epub Date: 2024-02-07 DOI: 10.1007/978-3-031-47292-3_3
Patryk Filipiak, Timothy M Shepherd, Lee Basler, Anthony Zuccolotto, Dimitris G Placantonakis, Walter Schneider, Fernando E Boada, Steven H Baete

White matter fiber reconstructions based on seeking local maxima of Orientation Distribution Functions (ODFs) typically fail to identify fibers crossing at narrow angles below 45°. ODF-Fingerprinting (ODF-FP) replaces the ODF maxima localization mechanism with pattern matching, allowing the use of all information stored in ODFs. In this work, we study the ability of ODF-FP to reconstruct fibers crossing at varied angles spanning 10°-90° in physical diffusion phantoms composed of textile tubes with 0.8μm diameter, approaching the anatomical scale of axons. Our results show that ODF-FP is able to correctly identify 80 ± 8% of the crossing fibers regardless of the crossing angle and provide the highest average reconstruction accuracy.

基于寻找取向分布函数(odf)局部最大值的白质纤维重建通常无法识别在45°以下窄角交叉的纤维。ODF指纹(ODF- fp)用模式匹配取代了ODF最大定位机制,允许使用存储在ODF中的所有信息。在这项工作中,我们研究了ODF-FP在直径0.8μm的纺织管组成的物理扩散幻影中重建以10°-90°不同角度交叉的纤维的能力,接近轴突的解剖尺度。结果表明,无论交叉角度如何,ODF-FP都能正确识别80±8%的交叉纤维,并提供最高的平均重建精度。
{"title":"Diffusion phantom study of fiber crossings at varied angles reconstructed with ODF-Fingerprinting.","authors":"Patryk Filipiak, Timothy M Shepherd, Lee Basler, Anthony Zuccolotto, Dimitris G Placantonakis, Walter Schneider, Fernando E Boada, Steven H Baete","doi":"10.1007/978-3-031-47292-3_3","DOIUrl":"10.1007/978-3-031-47292-3_3","url":null,"abstract":"<p><p>White matter fiber reconstructions based on seeking local maxima of Orientation Distribution Functions (ODFs) typically fail to identify fibers crossing at narrow angles below 45°. ODF-Fingerprinting (ODF-FP) replaces the ODF maxima localization mechanism with pattern matching, allowing the use of all information stored in ODFs. In this work, we study the ability of ODF-FP to reconstruct fibers crossing at varied angles spanning 10°-90° in physical diffusion phantoms composed of textile tubes with 0.8μm diameter, approaching the anatomical scale of axons. Our results show that ODF-FP is able to correctly identify 80 ± 8% of the crossing fibers regardless of the crossing angle and provide the highest average reconstruction accuracy.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"23-34"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Mapping of Residual Distortion Severity in Diffusion MRI. 自动绘制弥散核磁共振成像中的残余失真严重程度图
Pub Date : 2023-01-01 Epub Date: 2024-02-07 DOI: 10.1007/978-3-031-47292-3_6
Shuo Huang, Lujia Zhong, Yonggang Shi

Susceptibility-induced distortion is a common artifact in diffusion MRI (dMRI), which deforms the dMRI locally and poses significant challenges in connectivity analysis. While various methods were proposed to correct the distortion, residual distortions often persist at varying degrees across brain regions and subjects. Generating a voxel-level residual distortion severity map can thus be a valuable tool to better inform downstream connectivity analysis. To fill this current gap in dMRI analysis, we propose a supervised deep-learning network to predict a severity map of residual distortion. The training process is supervised using the structural similarity index measure (SSIM) of the fiber orientation distribution (FOD) in two opposite phase encoding (PE) directions. Only b0 images and related outputs from the distortion correction methods are needed as inputs in the testing process. The proposed method is applicable in large-scale datasets such as the UK Biobank, Adolescent Brain Cognitive Development (ABCD), and other emerging studies that only have complete dMRI data in one PE direction but acquires b0 images in both PEs. In our experiments, we trained the proposed model using the Lifespan Human Connectome Project Aging (HCP-Aging) dataset (n=662) and apply the trained model to data (n=1330) from UK Biobank. Our results show low training, validation, and test errors, and the severity map correlates excellently with an FOD integrity measure in both HCP-Aging and UK Biobank data. The proposed method is also highly efficient and can generate the severity map in around 1 second for each subject.

易感性引起的失真是弥散核磁共振成像(dMRI)中常见的伪影,它会使 dMRI 局部变形,给连通性分析带来巨大挑战。虽然人们提出了各种方法来校正畸变,但残余畸变往往会在不同脑区和受试者身上不同程度地存在。因此,生成体素级残余畸变严重程度图是一种有价值的工具,可为下游连通性分析提供更好的信息。为了填补目前在 dMRI 分析领域的这一空白,我们提出了一种有监督的深度学习网络来预测残余畸变的严重程度图。训练过程使用两个相反相位编码(PE)方向的纤维取向分布(FOD)的结构相似性指数测量(SSIM)进行监督。在测试过程中,只需将 b0 图像和畸变校正方法的相关输出作为输入。建议的方法适用于大规模数据集,如英国生物库、青少年脑认知发展(ABCD)和其他新兴研究,这些研究只有一个相位编码方向的完整 dMRI 数据,但在两个相位编码方向都获取了 b0 图像。在实验中,我们使用 "寿命人类连接组计划老化(HCP-Aging)"数据集(n=662)训练了所提出的模型,并将训练好的模型应用于英国生物库的数据(n=1330)。我们的结果表明,训练、验证和测试误差都很低,在 HCP-Aging 和英国生物库数据中,严重程度图与 FOD 完整性测量结果都有很好的相关性。所提出的方法也非常高效,可以在 1 秒钟左右的时间内生成每个受试者的严重程度图。
{"title":"Automated Mapping of Residual Distortion Severity in Diffusion MRI.","authors":"Shuo Huang, Lujia Zhong, Yonggang Shi","doi":"10.1007/978-3-031-47292-3_6","DOIUrl":"10.1007/978-3-031-47292-3_6","url":null,"abstract":"<p><p>Susceptibility-induced distortion is a common artifact in diffusion MRI (dMRI), which deforms the dMRI locally and poses significant challenges in connectivity analysis. While various methods were proposed to correct the distortion, residual distortions often persist at varying degrees across brain regions and subjects. Generating a voxel-level residual distortion severity map can thus be a valuable tool to better inform downstream connectivity analysis. To fill this current gap in dMRI analysis, we propose a supervised deep-learning network to predict a severity map of residual distortion. The training process is supervised using the structural similarity index measure (SSIM) of the fiber orientation distribution (FOD) in two opposite phase encoding (PE) directions. Only b0 images and related outputs from the distortion correction methods are needed as inputs in the testing process. The proposed method is applicable in large-scale datasets such as the UK Biobank, Adolescent Brain Cognitive Development (ABCD), and other emerging studies that only have complete dMRI data in one PE direction but acquires b0 images in both PEs. In our experiments, we trained the proposed model using the Lifespan Human Connectome Project Aging (HCP-Aging) dataset <math><mo>(</mo><mi>n</mi><mo>=</mo><mn>662</mn><mo>)</mo></math> and apply the trained model to data <math><mo>(</mo><mi>n</mi><mo>=</mo><mn>1330</mn><mo>)</mo></math> from UK Biobank. Our results show low training, validation, and test errors, and the severity map correlates excellently with an FOD integrity measure in both HCP-Aging and UK Biobank data. The proposed method is also highly efficient and can generate the severity map in around 1 second for each subject.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"58-69"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Unified Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-Weighted MRI. 非均质多壳扩散加权MRI上纤维取向分布函数估计的统一学习模型。
Pub Date : 2023-01-01 Epub Date: 2024-02-07 DOI: 10.1007/978-3-031-47292-3_2
Tianyuan Yao, Nancy Newlin, Praitayini Kanakaraj, Vishwesh Nath, Leon Y Cai, Karthik Ramadass, Kurt Schilling, Bennett A Landman, Yuankai Huo

Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relies on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences.

扩散加权(DW) MRI通过其在q空间中的频谱测量每个体素中局部扩散过程的方向和规模,通常在一个或多个壳层中获得。显微结构成像和多组织分解的最新进展引起了对信号径向b值依赖性的重新关注。因此,在组织分类和微结构估计中的应用需要在径向和角域上扩展信号表示。人们提出了多种方法来模拟DW-MRI信号与生物微观结构之间的非线性关系。近年来,与传统的基于模型的方法(如多壳多组织约束球面反卷积)相比,许多基于深度学习的方法朝着更快的推理速度和更高的扫描间一致性方向发展。然而,由于学习过程依赖于各种中间表示,例如简单谐振子重构(SHORE)表示,因此通常需要多阶段学习策略。在这项工作中,我们提出了一个统一的动态网络与单级球面卷积神经网络,它允许通过非均质多壳扩散MRI序列有效地估计纤维取向分布函数(fODF)。我们研究了人类连接组计划(HCP)年轻人的测试-重新测试扫描。实验结果表明,单阶段方法在含弹落和单弹DW-MRI序列的重复fODF估计中优于先前的多阶段方法。
{"title":"A Unified Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-Weighted MRI.","authors":"Tianyuan Yao, Nancy Newlin, Praitayini Kanakaraj, Vishwesh Nath, Leon Y Cai, Karthik Ramadass, Kurt Schilling, Bennett A Landman, Yuankai Huo","doi":"10.1007/978-3-031-47292-3_2","DOIUrl":"10.1007/978-3-031-47292-3_2","url":null,"abstract":"<p><p>Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relies on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"14328 ","pages":"13-22"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12662721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145650211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. 逐步随机字典自适应改进取向分布函数指纹显微结构重建。
Pub Date : 2022-11-01 DOI: 10.1007/978-3-031-21206-2_8
Patryk Filipiak, Timothy Shepherd, Lee Basler, Anthony Zuccolotto, Dimitris G Placantonakis, Walter Schneider, Fernando E Boada, Steven H Baete

Fitting of the multicompartment biophysical model of white matter is an ill-posed optimization problem. One approach to make it computationally tractable is through Orientation Distribution Function (ODF) Fingerprinting. However, the accuracy of this method relies solely on ODF dictionary generation mechanisms which either sample the microstructure parameters on a multidimensional grid or draw them randomly with a uniform distribution. In this paper, we propose a stepwise stochastic adaptation mechanism to generate ODF dictionaries tailored specifically to the diffusion-weighted images in hand. The results we obtained on a diffusion phantom and in vivo human brain images show that our reconstructed diffusivities are less noisy and the separation of a free water fraction is more pronounced than for the prior (uniform) distribution of ODF dictionaries.

白质多室生物物理模型的拟合是一个不适定优化问题。使其易于计算处理的一种方法是通过方向分布函数(ODF)指纹识别。然而,该方法的准确性仅依赖于ODF字典生成机制,该机制要么在多维网格上采样微观结构参数,要么以均匀分布的方式随机绘制它们。在本文中,我们提出了一种逐步随机自适应机制来生成专门针对手头扩散加权图像的ODF字典。我们在扩散幻像和活体人脑图像上获得的结果表明,我们重建的扩散系数噪声更小,自由水分数的分离比先前(均匀)分布的ODF字典更明显。
{"title":"Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting.","authors":"Patryk Filipiak,&nbsp;Timothy Shepherd,&nbsp;Lee Basler,&nbsp;Anthony Zuccolotto,&nbsp;Dimitris G Placantonakis,&nbsp;Walter Schneider,&nbsp;Fernando E Boada,&nbsp;Steven H Baete","doi":"10.1007/978-3-031-21206-2_8","DOIUrl":"https://doi.org/10.1007/978-3-031-21206-2_8","url":null,"abstract":"<p><p>Fitting of the multicompartment biophysical model of white matter is an ill-posed optimization problem. One approach to make it computationally tractable is through Orientation Distribution Function (ODF) Fingerprinting. However, the accuracy of this method relies solely on ODF dictionary generation mechanisms which either sample the microstructure parameters on a multidimensional grid or draw them randomly with a uniform distribution. In this paper, we propose a stepwise stochastic adaptation mechanism to generate ODF dictionaries tailored specifically to the diffusion-weighted images in hand. The results we obtained on a diffusion phantom and in vivo human brain images show that our reconstructed diffusivities are less noisy and the separation of a free water fraction is more pronounced than for the prior (uniform) distribution of ODF dictionaries.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"13722 ","pages":"89-100"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870046/pdf/nihms-1863087.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9819885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings 计算扩散MRI:第十三届国际研讨会,CDMRI 2022,与MICCAI 2022一起举行,新加坡,新加坡,2022年9月22日,会议录
Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-21206-2
{"title":"Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-21206-2","DOIUrl":"https://doi.org/10.1007/978-3-031-21206-2","url":null,"abstract":"","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83335779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lesion Normalization and Supervised Learning in Post-traumatic Seizure Classification with Diffusion MRI. 病灶归一化与监督学习在创伤后癫痫扩散MRI分类中的应用。
Pub Date : 2021-10-01 DOI: 10.1007/978-3-030-87615-9_12
Md Navid Akbar, Sebastian Ruf, Marianna La Rocca, Rachael Garner, Giuseppe Barisano, Ruskin Cua, Paul Vespa, Deniz Erdoğmuş, Dominique Duncan

Traumatic brain injury (TBI) is a serious condition, potentially causing seizures and other lifelong disabilities. Patients who experience at least one seizure one week after TBI (late seizure) are at high risk for lifelong complications of TBI, such as post-traumatic epilepsy (PTE). Identifying which TBI patients are at risk of developing seizures remains a challenge. Although magnetic resonance imaging (MRI) methods that probe structural and functional alterations after TBI are promising for biomarker detection, physical deformations following moderate-severe TBI present problems for standard processing of neuroimaging data, complicating the search for biomarkers. In this work, we consider a prediction task to identify which TBI patients will develop late seizures, using fractional anisotropy (FA) features from white matter tracts in diffusion-weighted MRI (dMRI). To understand how best to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of 0.819 and a mean area under the curve of 0.785. Finally, following statistical analyses of selected features, we recommend the dMRI alterations of a certain white matter tract as a potential biomarker.

创伤性脑损伤(TBI)是一种严重的疾病,可能导致癫痫发作和其他终身残疾。在脑外伤后一周发生至少一次癫痫发作(晚期癫痫发作)的患者患脑外伤终身并发症(如创伤后癫痫(PTE))的风险很高。确定哪些TBI患者有癫痫发作的风险仍然是一个挑战。尽管磁共振成像(MRI)方法探测脑外伤后的结构和功能变化,有望用于生物标志物检测,但中重度脑外伤后的物理变形给神经成像数据的标准处理带来了问题,使生物标志物的搜索复杂化。在这项工作中,我们考虑使用弥散加权MRI (dMRI)白质束的分数各向异性(FA)特征来预测哪些TBI患者会发展为晚期癫痫发作。为了了解如何最好地解释脑病变和变形,四种预处理策略应用于dMRI,包括病变归一化技术在dMRI中的新应用。涉及病灶归一化技术的管道预测效果最好,平均准确率为0.819,平均曲线下面积为0.785。最后,在对选定特征进行统计分析后,我们建议将特定白质束的dMRI改变作为潜在的生物标志物。
{"title":"Lesion Normalization and Supervised Learning in Post-traumatic Seizure Classification with Diffusion MRI.","authors":"Md Navid Akbar,&nbsp;Sebastian Ruf,&nbsp;Marianna La Rocca,&nbsp;Rachael Garner,&nbsp;Giuseppe Barisano,&nbsp;Ruskin Cua,&nbsp;Paul Vespa,&nbsp;Deniz Erdoğmuş,&nbsp;Dominique Duncan","doi":"10.1007/978-3-030-87615-9_12","DOIUrl":"https://doi.org/10.1007/978-3-030-87615-9_12","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a serious condition, potentially causing seizures and other lifelong disabilities. Patients who experience at least one seizure one week after TBI (late seizure) are at high risk for lifelong complications of TBI, such as post-traumatic epilepsy (PTE). Identifying which TBI patients are at risk of developing seizures remains a challenge. Although magnetic resonance imaging (MRI) methods that probe structural and functional alterations after TBI are promising for biomarker detection, physical deformations following moderate-severe TBI present problems for standard processing of neuroimaging data, complicating the search for biomarkers. In this work, we consider a prediction task to identify which TBI patients will develop late seizures, using fractional anisotropy (FA) features from white matter tracts in diffusion-weighted MRI (dMRI). To understand how best to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of 0.819 and a mean area under the curve of 0.785. Finally, following statistical analyses of selected features, we recommend the dMRI alterations of a certain white matter tract as a potential biomarker.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"13006 ","pages":"133-143"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365258/pdf/nihms-1914721.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational diffusion MRI : MICCAI Workshop
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1