改进婴儿弥散核磁共振成像分层的纵向协调。

Khoi Minh Huynh, Jaeil Kim, Geng Chen, Ye Wu, Dinggang Shen, Pew-Thian Yap
{"title":"改进婴儿弥散核磁共振成像分层的纵向协调。","authors":"Khoi Minh Huynh, Jaeil Kim, Geng Chen, Ye Wu, Dinggang Shen, Pew-Thian Yap","doi":"10.1007/978-3-030-05831-9_15","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain develops very rapidly in the first years of life, resulting in significant changes in water diffusion anisotropy. Developmental changes pose significant challenges to longitudinally consistent white matter tractography. In this paper, we will introduce a method to harmonize infant diffusion MRI data longitudinally across time. Specifically, we harmonize diffusion MRI data collected at an earlier time point to data collected at a later time point. This will promote longitudinal consistency and allow sharpening of fiber orientation distribution functions (ODFs) based on information available at the later time point. For this purpose, we will introduce an approach that is based on the method of moments, which allows harmonization to be performed directly on the diffusion-attenuated signal without the need to fit any diffusion models to the data. Given two diffusion MRI datasets, our method harmonizes them voxel-wise using well-behaving mapping functions (i.e., monotonic, diffeomorphic, etc.), parameters of which are determined by matching the spherical moments (i.e., mean, variance, skewness, etc.) of signal measurements on each shell. The mapping functions we use is isotropic and does not introduce new orientations that are not already in the original data. Our analysis indicates that longitudinal harmonization sharpens ODFs and improves tractography in infant diffusion MRI.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2019 ","pages":"183-191"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283964/pdf/nihms-1717213.pdf","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI.\",\"authors\":\"Khoi Minh Huynh, Jaeil Kim, Geng Chen, Ye Wu, Dinggang Shen, Pew-Thian Yap\",\"doi\":\"10.1007/978-3-030-05831-9_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human brain develops very rapidly in the first years of life, resulting in significant changes in water diffusion anisotropy. Developmental changes pose significant challenges to longitudinally consistent white matter tractography. In this paper, we will introduce a method to harmonize infant diffusion MRI data longitudinally across time. Specifically, we harmonize diffusion MRI data collected at an earlier time point to data collected at a later time point. This will promote longitudinal consistency and allow sharpening of fiber orientation distribution functions (ODFs) based on information available at the later time point. For this purpose, we will introduce an approach that is based on the method of moments, which allows harmonization to be performed directly on the diffusion-attenuated signal without the need to fit any diffusion models to the data. Given two diffusion MRI datasets, our method harmonizes them voxel-wise using well-behaving mapping functions (i.e., monotonic, diffeomorphic, etc.), parameters of which are determined by matching the spherical moments (i.e., mean, variance, skewness, etc.) of signal measurements on each shell. The mapping functions we use is isotropic and does not introduce new orientations that are not already in the original data. Our analysis indicates that longitudinal harmonization sharpens ODFs and improves tractography in infant diffusion MRI.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2019 \",\"pages\":\"183-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283964/pdf/nihms-1717213.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-05831-9_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-05831-9_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脑在出生后的最初几年发育非常迅速,导致水扩散各向异性发生显著变化。发育变化给纵向一致的白质束描带来了巨大挑战。在本文中,我们将介绍一种协调婴儿纵向跨时间弥散磁共振成像数据的方法。具体来说,我们将早期时间点采集的弥散核磁共振成像数据与后期时间点采集的数据进行协调。这将促进纵向一致性,并可根据较晚时间点的信息锐化纤维取向分布函数(ODF)。为此,我们将介绍一种基于矩方法的方法,这种方法可以直接对扩散衰减信号进行协调,而无需对数据拟合任何扩散模型。在给定两个扩散 MRI 数据集的情况下,我们的方法使用良好的映射函数(即单调映射函数、差形映射函数等)对它们进行体素协调,映射函数的参数通过匹配每个外壳上信号测量的球矩(即均值、方差、偏斜度等)来确定。我们使用的映射函数是各向同性的,不会引入原始数据中没有的新方向。我们的分析表明,纵向协调可使婴儿弥散核磁共振成像中的 ODF 更清晰,并改善其束线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI.

The human brain develops very rapidly in the first years of life, resulting in significant changes in water diffusion anisotropy. Developmental changes pose significant challenges to longitudinally consistent white matter tractography. In this paper, we will introduce a method to harmonize infant diffusion MRI data longitudinally across time. Specifically, we harmonize diffusion MRI data collected at an earlier time point to data collected at a later time point. This will promote longitudinal consistency and allow sharpening of fiber orientation distribution functions (ODFs) based on information available at the later time point. For this purpose, we will introduce an approach that is based on the method of moments, which allows harmonization to be performed directly on the diffusion-attenuated signal without the need to fit any diffusion models to the data. Given two diffusion MRI datasets, our method harmonizes them voxel-wise using well-behaving mapping functions (i.e., monotonic, diffeomorphic, etc.), parameters of which are determined by matching the spherical moments (i.e., mean, variance, skewness, etc.) of signal measurements on each shell. The mapping functions we use is isotropic and does not introduce new orientations that are not already in the original data. Our analysis indicates that longitudinal harmonization sharpens ODFs and improves tractography in infant diffusion MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. Automated Mapping of Residual Distortion Severity in Diffusion MRI. Stepwise Stochastic Dictionary Adaptation Improves Microstructure Reconstruction with Orientation Distribution Function Fingerprinting. Computational Diffusion MRI: 13th International Workshop, CDMRI 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1