Orsolya Kiss, Aimée Goldstone, Massimiliano de Zambotti, Dilara Yüksel, Brant P Hasler, Peter L Franzen, Sandra A Brown, Michael D De Bellis, Bonnie J Nagel, Kate B Nooner, Susan F Tapert, Ian M Colrain, Duncan B Clark, Fiona C Baker
{"title":"新出现的饮酒对青少年功能性睡眠指标发展轨迹的影响。","authors":"Orsolya Kiss, Aimée Goldstone, Massimiliano de Zambotti, Dilara Yüksel, Brant P Hasler, Peter L Franzen, Sandra A Brown, Michael D De Bellis, Bonnie J Nagel, Kate B Nooner, Susan F Tapert, Ian M Colrain, Duncan B Clark, Fiona C Baker","doi":"10.1093/sleep/zsad113","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use).</p><p><strong>Methods: </strong>Adolescents (n = 94, 43% female, age: 12-21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline.</p><p><strong>Results: </strong>Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males.</p><p><strong>Conclusions: </strong>These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep-wake regulation.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":"46 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of emerging alcohol use on developmental trajectories of functional sleep measures in adolescents.\",\"authors\":\"Orsolya Kiss, Aimée Goldstone, Massimiliano de Zambotti, Dilara Yüksel, Brant P Hasler, Peter L Franzen, Sandra A Brown, Michael D De Bellis, Bonnie J Nagel, Kate B Nooner, Susan F Tapert, Ian M Colrain, Duncan B Clark, Fiona C Baker\",\"doi\":\"10.1093/sleep/zsad113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study objectives: </strong>Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use).</p><p><strong>Methods: </strong>Adolescents (n = 94, 43% female, age: 12-21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline.</p><p><strong>Results: </strong>Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males.</p><p><strong>Conclusions: </strong>These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep-wake regulation.</p>\",\"PeriodicalId\":49514,\"journal\":{\"name\":\"Sleep\",\"volume\":\"46 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/sleep/zsad113\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad113","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Effects of emerging alcohol use on developmental trajectories of functional sleep measures in adolescents.
Study objectives: Adolescence is characterized by significant brain development, accompanied by changes in sleep timing and architecture. It also is a period of profound psychosocial changes, including the initiation of alcohol use; however, it is unknown how alcohol use affects sleep architecture in the context of adolescent development. We tracked developmental changes in polysomnographic (PSG) and electroencephalographic (EEG) sleep measures and their relationship with emergent alcohol use in adolescents considering confounding effects (e.g. cannabis use).
Methods: Adolescents (n = 94, 43% female, age: 12-21 years) in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study had annual laboratory PSG recordings across 4-years. Participants were no/low drinkers at baseline.
Results: Linear mixed effect models showed developmental changes in sleep macrostructure and EEG, including a decrease in slow wave sleep and slow wave (delta) EEG activity with advancing age. Emergent moderate/heavy alcohol use across three follow-up years was associated with a decline in percentage rapid eye movement (REM) sleep over time, a longer sleep onset latency (SOL) and shorter total sleep time (TST) in older adolescents, and lower non-REM delta and theta power in males.
Conclusions: These longitudinal data show substantial developmental changes in sleep architecture. Emergent alcohol use during this period was associated with altered sleep continuity, architecture, and EEG measures, with some effects dependent on age and sex. These effects, in part, could be attributed to the effects of alcohol on underlying brain maturation processes involved in sleep-wake regulation.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.