Akhilesh Deep Arya, Sourabh Singh Verma, Prasun Chakarabarti, Tulika Chakrabarti, Ahmed A Elngar, Ali-Mohammad Kamali, Mohammad Nami
{"title":"机器学习和深度学习技术在阿尔茨海默病有效诊断中的系统综述。","authors":"Akhilesh Deep Arya, Sourabh Singh Verma, Prasun Chakarabarti, Tulika Chakrabarti, Ahmed A Elngar, Ali-Mohammad Kamali, Mohammad Nami","doi":"10.1186/s40708-023-00195-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a brain-related disease in which the condition of the patient gets worse with time. AD is not a curable disease by any medication. It is impossible to halt the death of brain cells, but with the help of medication, the effects of AD can be delayed. As not all MCI patients will suffer from AD, it is required to accurately diagnose whether a mild cognitive impaired (MCI) patient will convert to AD (namely MCI converter MCI-C) or not (namely MCI non-converter MCI-NC), during early diagnosis. There are two modalities, positron emission tomography (PET) and magnetic resonance image (MRI), used by a physician for the diagnosis of Alzheimer's disease. Machine learning and deep learning perform exceptionally well in the field of computer vision where there is a requirement to extract information from high-dimensional data. Researchers use deep learning models in the field of medicine for diagnosis, prognosis, and even to predict the future health of the patient under medication. This study is a systematic review of publications using machine learning and deep learning methods for early classification of normal cognitive (NC) and Alzheimer's disease (AD).This study is an effort to provide the details of the two most commonly used modalities PET and MRI for the identification of AD, and to evaluate the performance of both modalities while working with different classifiers.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349019/pdf/","citationCount":"2","resultStr":"{\"title\":\"A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease.\",\"authors\":\"Akhilesh Deep Arya, Sourabh Singh Verma, Prasun Chakarabarti, Tulika Chakrabarti, Ahmed A Elngar, Ali-Mohammad Kamali, Mohammad Nami\",\"doi\":\"10.1186/s40708-023-00195-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a brain-related disease in which the condition of the patient gets worse with time. AD is not a curable disease by any medication. It is impossible to halt the death of brain cells, but with the help of medication, the effects of AD can be delayed. As not all MCI patients will suffer from AD, it is required to accurately diagnose whether a mild cognitive impaired (MCI) patient will convert to AD (namely MCI converter MCI-C) or not (namely MCI non-converter MCI-NC), during early diagnosis. There are two modalities, positron emission tomography (PET) and magnetic resonance image (MRI), used by a physician for the diagnosis of Alzheimer's disease. Machine learning and deep learning perform exceptionally well in the field of computer vision where there is a requirement to extract information from high-dimensional data. Researchers use deep learning models in the field of medicine for diagnosis, prognosis, and even to predict the future health of the patient under medication. This study is a systematic review of publications using machine learning and deep learning methods for early classification of normal cognitive (NC) and Alzheimer's disease (AD).This study is an effort to provide the details of the two most commonly used modalities PET and MRI for the identification of AD, and to evaluate the performance of both modalities while working with different classifiers.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349019/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00195-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00195-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease.
Alzheimer's disease (AD) is a brain-related disease in which the condition of the patient gets worse with time. AD is not a curable disease by any medication. It is impossible to halt the death of brain cells, but with the help of medication, the effects of AD can be delayed. As not all MCI patients will suffer from AD, it is required to accurately diagnose whether a mild cognitive impaired (MCI) patient will convert to AD (namely MCI converter MCI-C) or not (namely MCI non-converter MCI-NC), during early diagnosis. There are two modalities, positron emission tomography (PET) and magnetic resonance image (MRI), used by a physician for the diagnosis of Alzheimer's disease. Machine learning and deep learning perform exceptionally well in the field of computer vision where there is a requirement to extract information from high-dimensional data. Researchers use deep learning models in the field of medicine for diagnosis, prognosis, and even to predict the future health of the patient under medication. This study is a systematic review of publications using machine learning and deep learning methods for early classification of normal cognitive (NC) and Alzheimer's disease (AD).This study is an effort to provide the details of the two most commonly used modalities PET and MRI for the identification of AD, and to evaluate the performance of both modalities while working with different classifiers.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing