Xia Chuai, Yaya Zhou, Junhua Feng, Menghan Yu, Yan Wu, Lujuan Han, Yan Zhao, Hongxiu Qiao, Zhiyun Gao, Jian Li, Lixin Xie, Wenting Zhao, Changle Wang
{"title":"临床分离鲍曼不动杆菌CYZ多药耐药决定因素全基因组测序分析","authors":"Xia Chuai, Yaya Zhou, Junhua Feng, Menghan Yu, Yan Wu, Lujuan Han, Yan Zhao, Hongxiu Qiao, Zhiyun Gao, Jian Li, Lixin Xie, Wenting Zhao, Changle Wang","doi":"10.1111/1348-0421.13087","DOIUrl":null,"url":null,"abstract":"<p><i>Acinetobacter baumannii</i> is a multidrug-resistant coccobacillus responsible for severe nosocomial infectious diseases. This study mainly focuses on investigating the antimicrobial resistance features of a clinically isolated strain (<i>A. baumannii</i> CYZ) using the PacBio Sequel II sequencing platform. The chromosomal size of <i>A. baumannii</i> CYZ is 3,960,760 bp, which contains a total of 3803 genes with a G + C content of 39.06%. Functional analysis performed using the Clusters of Orthologous Groups of Proteins (COGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, as well as the Comprehensive Antibiotic Resistance Database (CARD) revealed a complicated set of antimicrobial resistance determinants in the genome of <i>A. baumannii</i> CYZ, which were mainly classified into multidrug efflux pumps and transport systems, β-lactamase relative and penicillin-binding proteins, aminoglycoside modification enzymes, alternation of antibiotic target sites, lipopolysaccharide relative, and other mechanisms. A total of 35 antibiotics were tested for the antimicrobial susceptibility of <i>A. baumannii</i> CYZ, and the organism exhibited a stronger antimicrobial resistance ability. The phylogenetic relationship indicated that <i>A. baumannii</i> CYZ has high homology with <i>A. baumannii</i> ATCC 17978; however, the former also exhibited its specific genome characteristics. Our research results give insight into the genetic antimicrobial-resistant features of <i>A. baumannii</i> CYZ as well as provide a genetic basis for the further study of the phenotype.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"67 9","pages":"396-403"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of multidrug-resistant determinants of clinically isolated Acinetobacter baumannii CYZ via whole genome sequencing\",\"authors\":\"Xia Chuai, Yaya Zhou, Junhua Feng, Menghan Yu, Yan Wu, Lujuan Han, Yan Zhao, Hongxiu Qiao, Zhiyun Gao, Jian Li, Lixin Xie, Wenting Zhao, Changle Wang\",\"doi\":\"10.1111/1348-0421.13087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Acinetobacter baumannii</i> is a multidrug-resistant coccobacillus responsible for severe nosocomial infectious diseases. This study mainly focuses on investigating the antimicrobial resistance features of a clinically isolated strain (<i>A. baumannii</i> CYZ) using the PacBio Sequel II sequencing platform. The chromosomal size of <i>A. baumannii</i> CYZ is 3,960,760 bp, which contains a total of 3803 genes with a G + C content of 39.06%. Functional analysis performed using the Clusters of Orthologous Groups of Proteins (COGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, as well as the Comprehensive Antibiotic Resistance Database (CARD) revealed a complicated set of antimicrobial resistance determinants in the genome of <i>A. baumannii</i> CYZ, which were mainly classified into multidrug efflux pumps and transport systems, β-lactamase relative and penicillin-binding proteins, aminoglycoside modification enzymes, alternation of antibiotic target sites, lipopolysaccharide relative, and other mechanisms. A total of 35 antibiotics were tested for the antimicrobial susceptibility of <i>A. baumannii</i> CYZ, and the organism exhibited a stronger antimicrobial resistance ability. The phylogenetic relationship indicated that <i>A. baumannii</i> CYZ has high homology with <i>A. baumannii</i> ATCC 17978; however, the former also exhibited its specific genome characteristics. Our research results give insight into the genetic antimicrobial-resistant features of <i>A. baumannii</i> CYZ as well as provide a genetic basis for the further study of the phenotype.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\"67 9\",\"pages\":\"396-403\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
鲍曼不动杆菌是一种多重耐药球芽孢杆菌,可导致严重的医院传染病。本研究主要利用PacBio Sequel II测序平台研究临床分离菌株(鲍曼不动杆菌CYZ)的耐药特征。鲍曼不动杆菌CYZ染色体大小为3960760 bp,共包含3803个基因,G + C含量为39.06%。利用同源蛋白群(Clusters of Orthologous Groups of Proteins, COGs)、基因本体(Gene Ontology, GO)、京都基因与基因组百科全书(KEGG)数据库以及抗生素耐药性综合数据库(Comprehensive Antibiotic Resistance Database, CARD)进行的功能分析显示,鲍曼不动杆菌CYZ基因组中存在一组复杂的耐药决定因素,主要分为多药外排泵和转运系统、β-内酰胺酶相关蛋白和青霉素结合蛋白。氨基糖苷修饰酶,抗生素靶位点的改变,脂多糖相关,和其他机制。鲍曼不动杆菌CYZ共对35种抗生素进行了药敏试验,结果表明该菌具有较强的耐药能力。系统发育关系表明,鲍曼不动杆菌CYZ与鲍曼不动杆菌ATCC 17978具有高度同源性;然而,前者也表现出其特定的基因组特征。我们的研究结果揭示了鲍曼不动杆菌CYZ的遗传耐药特征,并为进一步研究其表型提供了遗传基础。
Analysis of multidrug-resistant determinants of clinically isolated Acinetobacter baumannii CYZ via whole genome sequencing
Acinetobacter baumannii is a multidrug-resistant coccobacillus responsible for severe nosocomial infectious diseases. This study mainly focuses on investigating the antimicrobial resistance features of a clinically isolated strain (A. baumannii CYZ) using the PacBio Sequel II sequencing platform. The chromosomal size of A. baumannii CYZ is 3,960,760 bp, which contains a total of 3803 genes with a G + C content of 39.06%. Functional analysis performed using the Clusters of Orthologous Groups of Proteins (COGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, as well as the Comprehensive Antibiotic Resistance Database (CARD) revealed a complicated set of antimicrobial resistance determinants in the genome of A. baumannii CYZ, which were mainly classified into multidrug efflux pumps and transport systems, β-lactamase relative and penicillin-binding proteins, aminoglycoside modification enzymes, alternation of antibiotic target sites, lipopolysaccharide relative, and other mechanisms. A total of 35 antibiotics were tested for the antimicrobial susceptibility of A. baumannii CYZ, and the organism exhibited a stronger antimicrobial resistance ability. The phylogenetic relationship indicated that A. baumannii CYZ has high homology with A. baumannii ATCC 17978; however, the former also exhibited its specific genome characteristics. Our research results give insight into the genetic antimicrobial-resistant features of A. baumannii CYZ as well as provide a genetic basis for the further study of the phenotype.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.