烟曲霉对苯甲草胺及其代谢物的菌修复。

Nancy Kwatra, Jayanthi Abraham
{"title":"烟曲霉对苯甲草胺及其代谢物的菌修复。","authors":"Nancy Kwatra,&nbsp;Jayanthi Abraham","doi":"10.1080/03601234.2023.2232276","DOIUrl":null,"url":null,"abstract":"<p><p>Pretilachlor is one of the widely used chloroacetamide herbicides in Asian countries to control weeds in the rice field. The extensive use of herbicides has caused major concern among scientists throughout the world. Therefore, it is essential to develop an efficient method for the remediation of pretilachlor and its harmful by-products from contaminated surfaces. Mycoremediation is known to play a key role in the removal of various environmental contaminants. Hence, in the present study, strain AJN2 <i>Aspergillus ficuum</i> was isolated from a paddy field that was in continuous exposure to pretilachlor for over a decade. The degradation studies showed that the strain was efficiently able to degrade 73% of pretilachlor in an aqueous medium within 15 days of incubation and 70% of its major metabolite PME (2-methyl-6-ethylalanine). The GC/MS profile revealed the formation of aldehyde as the end product of degradation which was confirmed through the infrared fingerprint of the degradation sample. The ligninolytic enzyme activity studies showed that the lignin peroxidase enzyme system could be responsible for the degradation of pretilachlor and its major metabolite. The results highlight that the strain AJN2 <i>A. ficuum</i> could be a potential strain for the bioremediation of pretilachlor from the contaminated areas.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":"58 6","pages":"489-499"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycoremediation of pretilachlor and its metabolite by <i>Aspergillus ficuum</i>.\",\"authors\":\"Nancy Kwatra,&nbsp;Jayanthi Abraham\",\"doi\":\"10.1080/03601234.2023.2232276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pretilachlor is one of the widely used chloroacetamide herbicides in Asian countries to control weeds in the rice field. The extensive use of herbicides has caused major concern among scientists throughout the world. Therefore, it is essential to develop an efficient method for the remediation of pretilachlor and its harmful by-products from contaminated surfaces. Mycoremediation is known to play a key role in the removal of various environmental contaminants. Hence, in the present study, strain AJN2 <i>Aspergillus ficuum</i> was isolated from a paddy field that was in continuous exposure to pretilachlor for over a decade. The degradation studies showed that the strain was efficiently able to degrade 73% of pretilachlor in an aqueous medium within 15 days of incubation and 70% of its major metabolite PME (2-methyl-6-ethylalanine). The GC/MS profile revealed the formation of aldehyde as the end product of degradation which was confirmed through the infrared fingerprint of the degradation sample. The ligninolytic enzyme activity studies showed that the lignin peroxidase enzyme system could be responsible for the degradation of pretilachlor and its major metabolite. The results highlight that the strain AJN2 <i>A. ficuum</i> could be a potential strain for the bioremediation of pretilachlor from the contaminated areas.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\"58 6\",\"pages\":\"489-499\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2023.2232276\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2023.2232276","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

吡甲草胺是亚洲国家广泛使用的氯乙酰胺除草剂之一。除草剂的广泛使用引起了全世界科学家的极大关注。因此,开发一种有效的方法来修复被污染表面的苯甲草胺及其有害副产物是十分必要的。众所周知,真菌修复在去除各种环境污染物方面起着关键作用。因此,在本研究中,菌株AJN2无花果曲霉是从稻田中分离出来的,该稻田连续暴露于吡草胺超过十年。降解研究表明,该菌株在培养15天内可有效降解73%的苯甲草胺,70%的苯甲草胺主要代谢物PME(2-甲基-6-乙基丙氨酸)。GC/MS分析表明,降解的最终产物为醛,通过红外指纹图谱证实了这一点。木质素降解酶活性研究表明,木质素过氧化物酶系统可能负责降解苯甲酰及其主要代谢物。结果表明,菌株AJN2是一种具有潜在生物修复潜力的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycoremediation of pretilachlor and its metabolite by Aspergillus ficuum.

Pretilachlor is one of the widely used chloroacetamide herbicides in Asian countries to control weeds in the rice field. The extensive use of herbicides has caused major concern among scientists throughout the world. Therefore, it is essential to develop an efficient method for the remediation of pretilachlor and its harmful by-products from contaminated surfaces. Mycoremediation is known to play a key role in the removal of various environmental contaminants. Hence, in the present study, strain AJN2 Aspergillus ficuum was isolated from a paddy field that was in continuous exposure to pretilachlor for over a decade. The degradation studies showed that the strain was efficiently able to degrade 73% of pretilachlor in an aqueous medium within 15 days of incubation and 70% of its major metabolite PME (2-methyl-6-ethylalanine). The GC/MS profile revealed the formation of aldehyde as the end product of degradation which was confirmed through the infrared fingerprint of the degradation sample. The ligninolytic enzyme activity studies showed that the lignin peroxidase enzyme system could be responsible for the degradation of pretilachlor and its major metabolite. The results highlight that the strain AJN2 A. ficuum could be a potential strain for the bioremediation of pretilachlor from the contaminated areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
期刊最新文献
Effects of root-irrigation with metalaxyl-M and hymexazol on soil physical and chemical properties, enzyme activity, and the fungal diversity, community structure and function. In vitro cytotoxicity assessment of different solvents used in pesticide dilution. Improved photocatalytic decomposition of carbaryl pesticide in wastewater using ZnO nanorods. Root exudation of glyphosate in Eucalyptus urophylla S.T. Blake. Occurrence of organotin compounds in food: increasing challenge of phenyltin compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1