Susannah B F Paletz, Ewa M Golonka, Nick B Pandža, Grace Stanton, David Ryan, Nikki Adams, C Anton Rytting, Egle E Murauskaite, Cody Buntain, Michael A Johns, Petra Bradley
{"title":"社交媒体情感注释指南(SMEmo):开发和初步有效性。","authors":"Susannah B F Paletz, Ewa M Golonka, Nick B Pandža, Grace Stanton, David Ryan, Nikki Adams, C Anton Rytting, Egle E Murauskaite, Cody Buntain, Michael A Johns, Petra Bradley","doi":"10.3758/s13428-023-02195-1","DOIUrl":null,"url":null,"abstract":"<p><p>The proper measurement of emotion is vital to understanding the relationship between emotional expression in social media and other factors, such as online information sharing. This work develops a standardized annotation scheme for quantifying emotions in social media using recent emotion theory and research. Human annotators assessed both social media posts and their own reactions to the posts' content on scales of 0 to 100 for each of 20 (Study 1) and 23 (Study 2) emotions. For Study 1, we analyzed English-language posts from Twitter (N = 244) and YouTube (N = 50). Associations between emotion ratings and text-based measures (LIWC, VADER, EmoLex, NRC-EIL, Emotionality) demonstrated convergent and discriminant validity. In Study 2, we tested an expanded version of the scheme in-country, in-language, on Polish (N = 3648) and Lithuanian (N = 1934) multimedia Facebook posts. While the correlations were lower than with English, patterns of convergent and discriminant validity with EmoLex and NRC-EIL still held. Coder reliability was strong across samples, with intraclass correlations of .80 or higher for 10 different emotions in Study 1 and 16 different emotions in Study 2. This research improves the measurement of emotions in social media to include more dimensions, multimedia, and context compared to prior schemes.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"4435-4485"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social media emotions annotation guide (SMEmo): Development and initial validity.\",\"authors\":\"Susannah B F Paletz, Ewa M Golonka, Nick B Pandža, Grace Stanton, David Ryan, Nikki Adams, C Anton Rytting, Egle E Murauskaite, Cody Buntain, Michael A Johns, Petra Bradley\",\"doi\":\"10.3758/s13428-023-02195-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proper measurement of emotion is vital to understanding the relationship between emotional expression in social media and other factors, such as online information sharing. This work develops a standardized annotation scheme for quantifying emotions in social media using recent emotion theory and research. Human annotators assessed both social media posts and their own reactions to the posts' content on scales of 0 to 100 for each of 20 (Study 1) and 23 (Study 2) emotions. For Study 1, we analyzed English-language posts from Twitter (N = 244) and YouTube (N = 50). Associations between emotion ratings and text-based measures (LIWC, VADER, EmoLex, NRC-EIL, Emotionality) demonstrated convergent and discriminant validity. In Study 2, we tested an expanded version of the scheme in-country, in-language, on Polish (N = 3648) and Lithuanian (N = 1934) multimedia Facebook posts. While the correlations were lower than with English, patterns of convergent and discriminant validity with EmoLex and NRC-EIL still held. Coder reliability was strong across samples, with intraclass correlations of .80 or higher for 10 different emotions in Study 1 and 16 different emotions in Study 2. This research improves the measurement of emotions in social media to include more dimensions, multimedia, and context compared to prior schemes.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\" \",\"pages\":\"4435-4485\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-023-02195-1\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02195-1","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Social media emotions annotation guide (SMEmo): Development and initial validity.
The proper measurement of emotion is vital to understanding the relationship between emotional expression in social media and other factors, such as online information sharing. This work develops a standardized annotation scheme for quantifying emotions in social media using recent emotion theory and research. Human annotators assessed both social media posts and their own reactions to the posts' content on scales of 0 to 100 for each of 20 (Study 1) and 23 (Study 2) emotions. For Study 1, we analyzed English-language posts from Twitter (N = 244) and YouTube (N = 50). Associations between emotion ratings and text-based measures (LIWC, VADER, EmoLex, NRC-EIL, Emotionality) demonstrated convergent and discriminant validity. In Study 2, we tested an expanded version of the scheme in-country, in-language, on Polish (N = 3648) and Lithuanian (N = 1934) multimedia Facebook posts. While the correlations were lower than with English, patterns of convergent and discriminant validity with EmoLex and NRC-EIL still held. Coder reliability was strong across samples, with intraclass correlations of .80 or higher for 10 different emotions in Study 1 and 16 different emotions in Study 2. This research improves the measurement of emotions in social media to include more dimensions, multimedia, and context compared to prior schemes.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.