一种相互知识提取的人工智能框架,用于使用不完全多模图像早期检测阿尔茨海默病。

Min Gu Kwak, Lingchao Mao, Zhiyang Zheng, Yi Su, Fleming Lure, Jing Li
{"title":"一种相互知识提取的人工智能框架,用于使用不完全多模图像早期检测阿尔茨海默病。","authors":"Min Gu Kwak, Lingchao Mao, Zhiyang Zheng, Yi Su, Fleming Lure, Jing Li","doi":"10.1101/2023.08.24.23294574","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of Alzheimer's Disease (AD) is crucial for timely interventions and optimizing treatment outcomes. Despite the promise of integrating multimodal neuroimages such as MRI and PET, handling datasets with incomplete modalities remains under-researched. This phenomenon, however, is common in real-world scenarios as not every patient has all modalities due to practical constraints such as cost, access, and safety concerns. We propose a deep learning framework employing cross-modal Mutual Knowledge Distillation (MKD) to model different sub-cohorts of patients based on their available modalities. In MKD, the multimodal model (e.g., MRI and PET) serves as a teacher, while the single-modality model (e.g., MRI only) is the student. Our MKD framework features three components: a Modality-Disentangling Teacher (MDT) model designed through information disentanglement, a student model that learns from classification errors and MDT's knowledge, and the teacher model enhanced via distilling the student's single-modal feature extraction capabilities. Moreover, we show the effectiveness of the proposed method through theoretical analysis and validate its performance with simulation studies. In addition, our method is demonstrated through a case study with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, underscoring the potential of artificial intelligence in addressing incomplete multimodal neuroimaging datasets and advancing early AD detection.</p><p><strong>Note to practitioners—: </strong>This paper was motivated by the challenge of early AD diagnosis, particularly in scenarios when clinicians encounter varied availability of patient imaging data, such as MRI and PET scans, often constrained by cost or accessibility issues. We propose an incomplete multimodal learning framework that produces tailored models for patients with only MRI and patients with both MRI and PET. This approach improves the accuracy and effectiveness of early AD diagnosis, especially when imaging resources are limited, via bi-directional knowledge transfer. We introduced a teacher model that prioritizes extracting common information between different modalities, significantly enhancing the student model's learning process. This paper includes theoretical analysis, simulation study, and real-world case study to illustrate the method's promising potential in early AD detection. However, practitioners should be mindful of the complexities involved in model tuning. Future work will focus on improving model interpretability and expanding its application. This includes developing methods to discover the key brain regions for predictions, enhancing clinical trust, and extending the framework to incorporate a broader range of imaging modalities, demographic information, and clinical data. These advancements aim to provide a more comprehensive view of patient health and improve diagnostic accuracy across various neurodegenerative diseases.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/04/nihpp-2023.08.24.23294574v1.PMC10473798.pdf","citationCount":"0","resultStr":"{\"title\":\"A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.\",\"authors\":\"Min Gu Kwak, Lingchao Mao, Zhiyang Zheng, Yi Su, Fleming Lure, Jing Li\",\"doi\":\"10.1101/2023.08.24.23294574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection of Alzheimer's Disease (AD) is crucial for timely interventions and optimizing treatment outcomes. Despite the promise of integrating multimodal neuroimages such as MRI and PET, handling datasets with incomplete modalities remains under-researched. This phenomenon, however, is common in real-world scenarios as not every patient has all modalities due to practical constraints such as cost, access, and safety concerns. We propose a deep learning framework employing cross-modal Mutual Knowledge Distillation (MKD) to model different sub-cohorts of patients based on their available modalities. In MKD, the multimodal model (e.g., MRI and PET) serves as a teacher, while the single-modality model (e.g., MRI only) is the student. Our MKD framework features three components: a Modality-Disentangling Teacher (MDT) model designed through information disentanglement, a student model that learns from classification errors and MDT's knowledge, and the teacher model enhanced via distilling the student's single-modal feature extraction capabilities. Moreover, we show the effectiveness of the proposed method through theoretical analysis and validate its performance with simulation studies. In addition, our method is demonstrated through a case study with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, underscoring the potential of artificial intelligence in addressing incomplete multimodal neuroimaging datasets and advancing early AD detection.</p><p><strong>Note to practitioners—: </strong>This paper was motivated by the challenge of early AD diagnosis, particularly in scenarios when clinicians encounter varied availability of patient imaging data, such as MRI and PET scans, often constrained by cost or accessibility issues. We propose an incomplete multimodal learning framework that produces tailored models for patients with only MRI and patients with both MRI and PET. This approach improves the accuracy and effectiveness of early AD diagnosis, especially when imaging resources are limited, via bi-directional knowledge transfer. We introduced a teacher model that prioritizes extracting common information between different modalities, significantly enhancing the student model's learning process. This paper includes theoretical analysis, simulation study, and real-world case study to illustrate the method's promising potential in early AD detection. However, practitioners should be mindful of the complexities involved in model tuning. Future work will focus on improving model interpretability and expanding its application. This includes developing methods to discover the key brain regions for predictions, enhancing clinical trust, and extending the framework to incorporate a broader range of imaging modalities, demographic information, and clinical data. These advancements aim to provide a more comprehensive view of patient health and improve diagnostic accuracy across various neurodegenerative diseases.</p>\",\"PeriodicalId\":18659,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/04/nihpp-2023.08.24.23294574v1.PMC10473798.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.08.24.23294574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.24.23294574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的早期检测对于确保及时干预和优化患者的治疗结果至关重要。虽然整合MRI和PET等多模态神经图像显示出巨大的前景,但在整合中有效处理不完整的多模态图像数据集的研究有限。为此,我们提出了一个基于深度学习的框架,该框架使用互知识提取(MKD)基于不同的子队列各自可用的图像模式对其进行联合建模。在MKD中,具有更多模态(例如MRI和PET)的模型被视为教师,而具有较少模态(例如仅MRI)的模型则被视为学生。我们提出的MKD框架包括三个关键组成部分:首先,我们通过多模态信息解纠缠,设计了一个面向学生的教师模型,即面向学生的多模态教师(SMT)。其次,我们训练学生模型,不仅要最大限度地减少其分类错误,还要向SMT老师学习。第三,我们通过从学生的特征提取器进行迁移学习来更新教师模型,因为学生模型是用更多的样本训练的。对阿尔茨海默病神经成像倡议(ADNI)数据集的评估突出了我们方法的有效性。我们的工作证明了使用人工智能解决不完整的多模态神经图像数据集挑战的潜力,为推进早期AD检测和治疗策略开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

Early detection of Alzheimer's Disease (AD) is crucial for timely interventions and optimizing treatment outcomes. Despite the promise of integrating multimodal neuroimages such as MRI and PET, handling datasets with incomplete modalities remains under-researched. This phenomenon, however, is common in real-world scenarios as not every patient has all modalities due to practical constraints such as cost, access, and safety concerns. We propose a deep learning framework employing cross-modal Mutual Knowledge Distillation (MKD) to model different sub-cohorts of patients based on their available modalities. In MKD, the multimodal model (e.g., MRI and PET) serves as a teacher, while the single-modality model (e.g., MRI only) is the student. Our MKD framework features three components: a Modality-Disentangling Teacher (MDT) model designed through information disentanglement, a student model that learns from classification errors and MDT's knowledge, and the teacher model enhanced via distilling the student's single-modal feature extraction capabilities. Moreover, we show the effectiveness of the proposed method through theoretical analysis and validate its performance with simulation studies. In addition, our method is demonstrated through a case study with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, underscoring the potential of artificial intelligence in addressing incomplete multimodal neuroimaging datasets and advancing early AD detection.

Note to practitioners—: This paper was motivated by the challenge of early AD diagnosis, particularly in scenarios when clinicians encounter varied availability of patient imaging data, such as MRI and PET scans, often constrained by cost or accessibility issues. We propose an incomplete multimodal learning framework that produces tailored models for patients with only MRI and patients with both MRI and PET. This approach improves the accuracy and effectiveness of early AD diagnosis, especially when imaging resources are limited, via bi-directional knowledge transfer. We introduced a teacher model that prioritizes extracting common information between different modalities, significantly enhancing the student model's learning process. This paper includes theoretical analysis, simulation study, and real-world case study to illustrate the method's promising potential in early AD detection. However, practitioners should be mindful of the complexities involved in model tuning. Future work will focus on improving model interpretability and expanding its application. This includes developing methods to discover the key brain regions for predictions, enhancing clinical trust, and extending the framework to incorporate a broader range of imaging modalities, demographic information, and clinical data. These advancements aim to provide a more comprehensive view of patient health and improve diagnostic accuracy across various neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
After the Infection: A Survey of Pathogens and Non-communicable Human Disease. The Extra-Islet Pancreas Supports Autoimmunity in Human Type 1 Diabetes. Keyphrase Identification Using Minimal Labeled Data with Hierarchical Contexts and Transfer Learning. Advancing Efficacy Prediction for EHR-based Emulated Trials in Repurposing Heart Failure Therapies. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1