Mariia Radaeva, Helene Morin, Mohit Pandey, Fuqiang Ban, Maria Guo, Eric LeBlanc, Nada Lallous, Artem Cherkasov
{"title":"使用超大型虚拟筛选鉴定的雄激素受体DNA结合域的新型抑制剂。","authors":"Mariia Radaeva, Helene Morin, Mohit Pandey, Fuqiang Ban, Maria Guo, Eric LeBlanc, Nada Lallous, Artem Cherkasov","doi":"10.1002/minf.202300026","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen receptor (AR) inhibition remains the primary strategy to combat the progression of prostate cancer (PC). However, all clinically used AR inhibitors target the ligand-binding domain (LBD), which is highly susceptible to truncations through splicing or mutations that confer drug resistance. Thus, there exists an urgent need for AR inhibitors with novel modes of action. We thus launched a virtual screening of an ultra-large chemical library to find novel inhibitors of the AR DNA-binding domain (DBD) at two sites: protein-DNA interface (P-box) and dimerization site (D-box). The compounds selected through vigorous computational filtering were then experimentally validated. We identified several novel chemotypes that effectively suppress transcriptional activity of AR and its splice variant V7. The identified compounds represent previously unexplored chemical scaffolds with a mechanism of action that evades the conventional drug resistance manifested through LBD mutations. Additionally, we describe the binding features required to inhibit AR DBD at both P-box and D-box target sites.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"42 8-9","pages":"e2300026"},"PeriodicalIF":2.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Inhibitors of androgen receptor's DNA binding domain identified using an ultra-large virtual screening.\",\"authors\":\"Mariia Radaeva, Helene Morin, Mohit Pandey, Fuqiang Ban, Maria Guo, Eric LeBlanc, Nada Lallous, Artem Cherkasov\",\"doi\":\"10.1002/minf.202300026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgen receptor (AR) inhibition remains the primary strategy to combat the progression of prostate cancer (PC). However, all clinically used AR inhibitors target the ligand-binding domain (LBD), which is highly susceptible to truncations through splicing or mutations that confer drug resistance. Thus, there exists an urgent need for AR inhibitors with novel modes of action. We thus launched a virtual screening of an ultra-large chemical library to find novel inhibitors of the AR DNA-binding domain (DBD) at two sites: protein-DNA interface (P-box) and dimerization site (D-box). The compounds selected through vigorous computational filtering were then experimentally validated. We identified several novel chemotypes that effectively suppress transcriptional activity of AR and its splice variant V7. The identified compounds represent previously unexplored chemical scaffolds with a mechanism of action that evades the conventional drug resistance manifested through LBD mutations. Additionally, we describe the binding features required to inhibit AR DBD at both P-box and D-box target sites.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"42 8-9\",\"pages\":\"e2300026\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel Inhibitors of androgen receptor's DNA binding domain identified using an ultra-large virtual screening.
Androgen receptor (AR) inhibition remains the primary strategy to combat the progression of prostate cancer (PC). However, all clinically used AR inhibitors target the ligand-binding domain (LBD), which is highly susceptible to truncations through splicing or mutations that confer drug resistance. Thus, there exists an urgent need for AR inhibitors with novel modes of action. We thus launched a virtual screening of an ultra-large chemical library to find novel inhibitors of the AR DNA-binding domain (DBD) at two sites: protein-DNA interface (P-box) and dimerization site (D-box). The compounds selected through vigorous computational filtering were then experimentally validated. We identified several novel chemotypes that effectively suppress transcriptional activity of AR and its splice variant V7. The identified compounds represent previously unexplored chemical scaffolds with a mechanism of action that evades the conventional drug resistance manifested through LBD mutations. Additionally, we describe the binding features required to inhibit AR DBD at both P-box and D-box target sites.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.