Mohammad Reza Rezaei, Haseul Jeoung, Ayda Ghahramani, Uptal Saha, Venkat Bhat, Milos R Popovic, Ali Yousefi, Robert E W Chen, Milad Lankarany
{"title":"使用异质输入判别生成解码器模型推断言语Stroop任务中冲突选择的认知状态。","authors":"Mohammad Reza Rezaei, Haseul Jeoung, Ayda Ghahramani, Uptal Saha, Venkat Bhat, Milos R Popovic, Ali Yousefi, Robert E W Chen, Milad Lankarany","doi":"10.1088/1741-2552/ace932","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The subthalamic nucleus (STN) of the basal ganglia interacts with the medial prefrontal cortex (mPFC) and shapes a control loop, specifically when the brain receives contradictory information from either different sensory systems or conflicting information from sensory inputs and prior knowledge that developed in the brain. Experimental studies demonstrated that significant increases in theta activities (2-8 Hz) in both the STN and mPFC as well as increased phase synchronization between mPFC and STN are prominent features of conflict processing. While these neural features reflect the importance of STN-mPFC circuitry in conflict processing, a low-dimensional representation of the mPFC-STN interaction referred to as a cognitive state, that links neural activities generated by these sub-regions to behavioral signals (e.g. the response time), remains to be identified.<i>Approach</i>. Here, we propose a new model, namely, the heterogeneous input discriminative-generative decoder (HI-DGD) model, to infer a cognitive state underlying decision-making based on neural activities (STN and mPFC) and behavioral signals (individuals' response time) recorded in ten Parkinson's disease (PD) patients while they performed a Stroop task. PD patients may have conflict processing which is quantitatively (may be qualitative in some) different from healthy populations.<i>Main results</i>. Using extensive synthetic and experimental data, we showed that the HI-DGD model can diffuse information from neural and behavioral data simultaneously and estimate cognitive states underlying conflict and non-conflict trials significantly better than traditional methods. Additionally, the HI-DGD model identified which neural features made significant contributions to conflict and non-conflict choices. Interestingly, the estimated features match well with those reported in experimental studies.<i>Significance</i>. Finally, we highlight the capability of the HI-DGD model in estimating a cognitive state from a single trial of observation, which makes it appropriate to be utilized in closed-loop neuromodulation systems.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring cognitive state underlying conflict choices in verbal Stroop task using heterogeneous input discriminative-generative decoder model.\",\"authors\":\"Mohammad Reza Rezaei, Haseul Jeoung, Ayda Ghahramani, Uptal Saha, Venkat Bhat, Milos R Popovic, Ali Yousefi, Robert E W Chen, Milad Lankarany\",\"doi\":\"10.1088/1741-2552/ace932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. The subthalamic nucleus (STN) of the basal ganglia interacts with the medial prefrontal cortex (mPFC) and shapes a control loop, specifically when the brain receives contradictory information from either different sensory systems or conflicting information from sensory inputs and prior knowledge that developed in the brain. Experimental studies demonstrated that significant increases in theta activities (2-8 Hz) in both the STN and mPFC as well as increased phase synchronization between mPFC and STN are prominent features of conflict processing. While these neural features reflect the importance of STN-mPFC circuitry in conflict processing, a low-dimensional representation of the mPFC-STN interaction referred to as a cognitive state, that links neural activities generated by these sub-regions to behavioral signals (e.g. the response time), remains to be identified.<i>Approach</i>. Here, we propose a new model, namely, the heterogeneous input discriminative-generative decoder (HI-DGD) model, to infer a cognitive state underlying decision-making based on neural activities (STN and mPFC) and behavioral signals (individuals' response time) recorded in ten Parkinson's disease (PD) patients while they performed a Stroop task. PD patients may have conflict processing which is quantitatively (may be qualitative in some) different from healthy populations.<i>Main results</i>. Using extensive synthetic and experimental data, we showed that the HI-DGD model can diffuse information from neural and behavioral data simultaneously and estimate cognitive states underlying conflict and non-conflict trials significantly better than traditional methods. Additionally, the HI-DGD model identified which neural features made significant contributions to conflict and non-conflict choices. Interestingly, the estimated features match well with those reported in experimental studies.<i>Significance</i>. Finally, we highlight the capability of the HI-DGD model in estimating a cognitive state from a single trial of observation, which makes it appropriate to be utilized in closed-loop neuromodulation systems.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ace932\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ace932","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Inferring cognitive state underlying conflict choices in verbal Stroop task using heterogeneous input discriminative-generative decoder model.
Objective. The subthalamic nucleus (STN) of the basal ganglia interacts with the medial prefrontal cortex (mPFC) and shapes a control loop, specifically when the brain receives contradictory information from either different sensory systems or conflicting information from sensory inputs and prior knowledge that developed in the brain. Experimental studies demonstrated that significant increases in theta activities (2-8 Hz) in both the STN and mPFC as well as increased phase synchronization between mPFC and STN are prominent features of conflict processing. While these neural features reflect the importance of STN-mPFC circuitry in conflict processing, a low-dimensional representation of the mPFC-STN interaction referred to as a cognitive state, that links neural activities generated by these sub-regions to behavioral signals (e.g. the response time), remains to be identified.Approach. Here, we propose a new model, namely, the heterogeneous input discriminative-generative decoder (HI-DGD) model, to infer a cognitive state underlying decision-making based on neural activities (STN and mPFC) and behavioral signals (individuals' response time) recorded in ten Parkinson's disease (PD) patients while they performed a Stroop task. PD patients may have conflict processing which is quantitatively (may be qualitative in some) different from healthy populations.Main results. Using extensive synthetic and experimental data, we showed that the HI-DGD model can diffuse information from neural and behavioral data simultaneously and estimate cognitive states underlying conflict and non-conflict trials significantly better than traditional methods. Additionally, the HI-DGD model identified which neural features made significant contributions to conflict and non-conflict choices. Interestingly, the estimated features match well with those reported in experimental studies.Significance. Finally, we highlight the capability of the HI-DGD model in estimating a cognitive state from a single trial of observation, which makes it appropriate to be utilized in closed-loop neuromodulation systems.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.