Alex Nyporko, Olga Tsymbalyuk, Ivan Voiteshenko, Sergiy Starosyla, Mykola Protopopov, Volodymyr Bdzhola
{"title":"毒蕈碱乙酰胆碱受体M3抑制剂的计算机辅助设计:含三氟甲基的六氢嘧啶酮/硫酮中有前途的化合物。","authors":"Alex Nyporko, Olga Tsymbalyuk, Ivan Voiteshenko, Sergiy Starosyla, Mykola Protopopov, Volodymyr Bdzhola","doi":"10.1002/minf.202300006","DOIUrl":null,"url":null,"abstract":"<p><p>The new high selective mAChRs M3 inhibitors with IC<sub>50</sub> in nanomolecular ranges, which can be the prototypes for effective COPD and asthma treatment drugs, were discovered with computational approaches among trifluoromethyl containing hexahydropyrimidinones/thiones. Compounds [6-(4-ethoxy-3-methoxy-phenyl)-4-hydroxy-2-thioxo-4-(trifluoromethyl)hexahydropyrimidin-5-yl]-phenyl-methanone (THPT-1) and 5-benzoyl-6-(3,4-dimethoxyphenyl)-4-hydroxy-4-(trifluoromethyl)hexahydropyrimidin-2-one (THPO-4) have been proved to be a highly effective (with IC<sub>50</sub> values of 1.62 ⋅ 10<sup>-7</sup> M and 3.09 ⋅ 10<sup>-9</sup> M, respectively) at the same concentrations significantly competitive inhibit the signal conduction through mAChR3 in comparison with ipratropium bromide, without significant effect on mAChR2, nicotinic cholinergic and adrenergic receptors.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"42 8-9","pages":"e2300006"},"PeriodicalIF":2.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-aided design of muscarinic acetylcholine receptor M3 inhibitors: Promising compounds among trifluoromethyl containing hexahydropyrimidinones/thiones.\",\"authors\":\"Alex Nyporko, Olga Tsymbalyuk, Ivan Voiteshenko, Sergiy Starosyla, Mykola Protopopov, Volodymyr Bdzhola\",\"doi\":\"10.1002/minf.202300006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The new high selective mAChRs M3 inhibitors with IC<sub>50</sub> in nanomolecular ranges, which can be the prototypes for effective COPD and asthma treatment drugs, were discovered with computational approaches among trifluoromethyl containing hexahydropyrimidinones/thiones. Compounds [6-(4-ethoxy-3-methoxy-phenyl)-4-hydroxy-2-thioxo-4-(trifluoromethyl)hexahydropyrimidin-5-yl]-phenyl-methanone (THPT-1) and 5-benzoyl-6-(3,4-dimethoxyphenyl)-4-hydroxy-4-(trifluoromethyl)hexahydropyrimidin-2-one (THPO-4) have been proved to be a highly effective (with IC<sub>50</sub> values of 1.62 ⋅ 10<sup>-7</sup> M and 3.09 ⋅ 10<sup>-9</sup> M, respectively) at the same concentrations significantly competitive inhibit the signal conduction through mAChR3 in comparison with ipratropium bromide, without significant effect on mAChR2, nicotinic cholinergic and adrenergic receptors.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"42 8-9\",\"pages\":\"e2300006\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Computer-aided design of muscarinic acetylcholine receptor M3 inhibitors: Promising compounds among trifluoromethyl containing hexahydropyrimidinones/thiones.
The new high selective mAChRs M3 inhibitors with IC50 in nanomolecular ranges, which can be the prototypes for effective COPD and asthma treatment drugs, were discovered with computational approaches among trifluoromethyl containing hexahydropyrimidinones/thiones. Compounds [6-(4-ethoxy-3-methoxy-phenyl)-4-hydroxy-2-thioxo-4-(trifluoromethyl)hexahydropyrimidin-5-yl]-phenyl-methanone (THPT-1) and 5-benzoyl-6-(3,4-dimethoxyphenyl)-4-hydroxy-4-(trifluoromethyl)hexahydropyrimidin-2-one (THPO-4) have been proved to be a highly effective (with IC50 values of 1.62 ⋅ 10-7 M and 3.09 ⋅ 10-9 M, respectively) at the same concentrations significantly competitive inhibit the signal conduction through mAChR3 in comparison with ipratropium bromide, without significant effect on mAChR2, nicotinic cholinergic and adrenergic receptors.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.