纳米材料作为疾病潜在群体猝灭剂的应用:最新进展和挑战。

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in Biophysics & Molecular Biology Pub Date : 2023-09-02 DOI:10.1016/j.pbiomolbio.2023.08.005
Saad Alghamdi , Krisha Khandelwal , Soumya Pandit , Arpita Roy , Subhasree Ray , Ahad Amer Alsaiari , Abdulelah Aljuaid , Mazen Almehmadi , Mamdouh Allahyani , Rohit Sharma , Jigisha Anand , Ahmad Adnan Alshareef
{"title":"纳米材料作为疾病潜在群体猝灭剂的应用:最新进展和挑战。","authors":"Saad Alghamdi ,&nbsp;Krisha Khandelwal ,&nbsp;Soumya Pandit ,&nbsp;Arpita Roy ,&nbsp;Subhasree Ray ,&nbsp;Ahad Amer Alsaiari ,&nbsp;Abdulelah Aljuaid ,&nbsp;Mazen Almehmadi ,&nbsp;Mamdouh Allahyani ,&nbsp;Rohit Sharma ,&nbsp;Jigisha Anand ,&nbsp;Ahmad Adnan Alshareef","doi":"10.1016/j.pbiomolbio.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers<span><span> are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as “quorum quenching” (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, </span>bioluminescence<span><span>, chemiluminescence, fluorescence, chromatography-mass </span>spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.</span></span></p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges\",\"authors\":\"Saad Alghamdi ,&nbsp;Krisha Khandelwal ,&nbsp;Soumya Pandit ,&nbsp;Arpita Roy ,&nbsp;Subhasree Ray ,&nbsp;Ahad Amer Alsaiari ,&nbsp;Abdulelah Aljuaid ,&nbsp;Mazen Almehmadi ,&nbsp;Mamdouh Allahyani ,&nbsp;Rohit Sharma ,&nbsp;Jigisha Anand ,&nbsp;Ahmad Adnan Alshareef\",\"doi\":\"10.1016/j.pbiomolbio.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers<span><span> are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as “quorum quenching” (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, </span>bioluminescence<span><span>, chemiluminescence, fluorescence, chromatography-mass </span>spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.</span></span></p></div>\",\"PeriodicalId\":54554,\"journal\":{\"name\":\"Progress in Biophysics & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biophysics & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007961072300072X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072300072X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化学信号分子被细菌用来相互作用。被称为自身诱导物的小激素样分子在化学通讯过程中产生、释放、检测和反应。法定人数感应(QS)是指该程序;它允许细菌种群交流和协调群体行为。已经进行了几项关于使用抑制剂来预防QS并将有害后果降至最低的研究。通过自动诱导剂成分的酶促分解,通过防止自动诱导剂的形成,或通过添加一些可以模拟自动诱导物的化合物(抑制剂)来阻断其接收,一种被称为“群体猝灭”(QQ)的技术破坏了微生物的交流。许多技术,包括比色法、电化学、生物发光、化学发光、荧光、色谱-质谱等,都可以用来测试QS/QQ。它们都允许定量和定性测量QS/QQ分子。本文阐述了QS和QQ的作用机制,以及QQ在生物膜预防中的作用,并对QQ中的纳米粒子(NP)进行了基础研究。Q
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges

Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as “quorum quenching” (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
期刊最新文献
A physical perspective on lithium therapy. Editorial Board Computational approaches for modeling and structural design of biological systems: A comprehensive review Recent progress of mechanosensitive mechanism on breast cancer Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1