{"title":"环境温度和呼吸速率对鼻腔优势的影响:鼻孔专用可穿戴设备的初步发现。","authors":"Amit Kumar, Deepak Joshi","doi":"10.1088/1752-7163/acf339","DOIUrl":null,"url":null,"abstract":"<p><p>The nasal dominance (ND) determination is crucial for nasal synchronized ventilator, optimum nasal drug delivery, identifying brain hemispheric dominance, nasal airway obstruction surgery, mindfulness breathing, and for possible markers of a conscious state. Given these wider applications of ND, it is interesting to understand the patterns of ND with varying temperature and respiration rates. In this paper, we propose a method which measures peak-to-peak temperature oscillations (difference between end-expiratory and end-inspiratory temperature) for the left and right nostrils during nasal breathing. These nostril-specific temperature oscillations are further used to calculate the nasal dominance index (NDI), nasal laterality ratio (NLR), inter-nostril correlation, and mean of peak-to-peak temperature oscillation for inspiratory and expiratory phase at (1) different ambient temperatures of 18 °C, 28 °C, and 38 °C and (2) at three different respiration rate of 6 bpm, 12 bpm, and 18 bpm. The peak-to-peak temperature (<i>T</i><sub>pp</sub>) oscillation range (averaged across participants;<i>n</i>= 8) for the left and right nostril were 3.80 ± 0.57 °C and 2.34 ± 0.61 °C, 2.03 ± 0.20 °C and 1.40 ± 0.26 °C, and 0.20 ± 0.02 °C and 0.29 ± 0.03 °C at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively (averaged across participants and respiration rates). The NDI and NLR averaged across participants and three different respiration rates were 35.67 ± 5.53 and 2.03 ± 1.12; 8.36 ± 10.61 and 2.49 ± 3.69; and -25.04 ± 14.50 and 0.82 ± 0.54 at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively. The Shapiro-Wilk test, and non-parametric Friedman test showed a significant effect of ambient temperature conditions on both NDI and NLR. No significant effect of respiration rate condition was observed on both NDI and NLR. The findings of the proposed study indicate the importance of ambient temperature while determining ND during the diagnosis of breathing disorders such as septum deviation, nasal polyps, nosebleeds, rhinitis, and nasal fractions, and in the intensive care unit for nasal synchronized ventilator.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ambient temperature and respiration rate on nasal dominance: preliminary findings from a nostril-specific wearable.\",\"authors\":\"Amit Kumar, Deepak Joshi\",\"doi\":\"10.1088/1752-7163/acf339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nasal dominance (ND) determination is crucial for nasal synchronized ventilator, optimum nasal drug delivery, identifying brain hemispheric dominance, nasal airway obstruction surgery, mindfulness breathing, and for possible markers of a conscious state. Given these wider applications of ND, it is interesting to understand the patterns of ND with varying temperature and respiration rates. In this paper, we propose a method which measures peak-to-peak temperature oscillations (difference between end-expiratory and end-inspiratory temperature) for the left and right nostrils during nasal breathing. These nostril-specific temperature oscillations are further used to calculate the nasal dominance index (NDI), nasal laterality ratio (NLR), inter-nostril correlation, and mean of peak-to-peak temperature oscillation for inspiratory and expiratory phase at (1) different ambient temperatures of 18 °C, 28 °C, and 38 °C and (2) at three different respiration rate of 6 bpm, 12 bpm, and 18 bpm. The peak-to-peak temperature (<i>T</i><sub>pp</sub>) oscillation range (averaged across participants;<i>n</i>= 8) for the left and right nostril were 3.80 ± 0.57 °C and 2.34 ± 0.61 °C, 2.03 ± 0.20 °C and 1.40 ± 0.26 °C, and 0.20 ± 0.02 °C and 0.29 ± 0.03 °C at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively (averaged across participants and respiration rates). The NDI and NLR averaged across participants and three different respiration rates were 35.67 ± 5.53 and 2.03 ± 1.12; 8.36 ± 10.61 and 2.49 ± 3.69; and -25.04 ± 14.50 and 0.82 ± 0.54 at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively. The Shapiro-Wilk test, and non-parametric Friedman test showed a significant effect of ambient temperature conditions on both NDI and NLR. No significant effect of respiration rate condition was observed on both NDI and NLR. The findings of the proposed study indicate the importance of ambient temperature while determining ND during the diagnosis of breathing disorders such as septum deviation, nasal polyps, nosebleeds, rhinitis, and nasal fractions, and in the intensive care unit for nasal synchronized ventilator.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/acf339\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acf339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Effect of ambient temperature and respiration rate on nasal dominance: preliminary findings from a nostril-specific wearable.
The nasal dominance (ND) determination is crucial for nasal synchronized ventilator, optimum nasal drug delivery, identifying brain hemispheric dominance, nasal airway obstruction surgery, mindfulness breathing, and for possible markers of a conscious state. Given these wider applications of ND, it is interesting to understand the patterns of ND with varying temperature and respiration rates. In this paper, we propose a method which measures peak-to-peak temperature oscillations (difference between end-expiratory and end-inspiratory temperature) for the left and right nostrils during nasal breathing. These nostril-specific temperature oscillations are further used to calculate the nasal dominance index (NDI), nasal laterality ratio (NLR), inter-nostril correlation, and mean of peak-to-peak temperature oscillation for inspiratory and expiratory phase at (1) different ambient temperatures of 18 °C, 28 °C, and 38 °C and (2) at three different respiration rate of 6 bpm, 12 bpm, and 18 bpm. The peak-to-peak temperature (Tpp) oscillation range (averaged across participants;n= 8) for the left and right nostril were 3.80 ± 0.57 °C and 2.34 ± 0.61 °C, 2.03 ± 0.20 °C and 1.40 ± 0.26 °C, and 0.20 ± 0.02 °C and 0.29 ± 0.03 °C at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively (averaged across participants and respiration rates). The NDI and NLR averaged across participants and three different respiration rates were 35.67 ± 5.53 and 2.03 ± 1.12; 8.36 ± 10.61 and 2.49 ± 3.69; and -25.04 ± 14.50 and 0.82 ± 0.54 at the ambient temperature of 18 °C, 28 °C, and 38 °C respectively. The Shapiro-Wilk test, and non-parametric Friedman test showed a significant effect of ambient temperature conditions on both NDI and NLR. No significant effect of respiration rate condition was observed on both NDI and NLR. The findings of the proposed study indicate the importance of ambient temperature while determining ND during the diagnosis of breathing disorders such as septum deviation, nasal polyps, nosebleeds, rhinitis, and nasal fractions, and in the intensive care unit for nasal synchronized ventilator.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.