叶酸和亚叶酸通过IGF1R/PI3K/AKT和SIRT1/AMPK通路保护衰老三转基因阿尔茨海默病小鼠的心脏

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neurotoxicity Research Pub Date : 2023-12-01 Epub Date: 2023-09-14 DOI:10.1007/s12640-023-00666-z
Da-Tong Ju, Rwei-Fen S Huang, Bruce Chi-Kang Tsai, Yi-Chen Su, Ping-Ling Chiu, Yung-Ming Chang, V Vijaya Padma, Tsung-Jung Ho, Chun-Hsu Yao, Wei-Wen Kuo, Chih-Yang Huang
{"title":"叶酸和亚叶酸通过IGF1R/PI3K/AKT和SIRT1/AMPK通路保护衰老三转基因阿尔茨海默病小鼠的心脏","authors":"Da-Tong Ju, Rwei-Fen S Huang, Bruce Chi-Kang Tsai, Yi-Chen Su, Ping-Ling Chiu, Yung-Ming Chang, V Vijaya Padma, Tsung-Jung Ho, Chun-Hsu Yao, Wei-Wen Kuo, Chih-Yang Huang","doi":"10.1007/s12640-023-00666-z","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with Alzheimer's disease have increased risk of developing heart disease, which therefore highlights the need for strategies aiming at reducing Alzheimer's disease-related cardiovascular disease. Folic acid and folinic acid are beneficial to the heart. We aimed to investigate the benefits of folic acid and folinic acid in heart of patients with late-stage Alzheimer's disease. Twelve 16-month-old mice of triple-transgenic late-stage Alzheimer's disease were divided into three groups: Alzheimer's disease group, Alzheimer's disease + folic acid group, and Alzheimer's disease + folinic acid group. The mice were administered 12 mg/kg folic acid or folinic acid once daily via oral gavage for 3 months. In the folic acid and folinic acid treatment groups, the intercellular space was reduced, compared with the Alzheimer's disease group. TUNEL assay and western blot images showed that the number of apoptotic cells and the apoptosis-related protein expression were higher in the Alzheimer's disease group than in other two treated groups. Folic acid and folinic acid induced the IGF1R/PI3K/AKT and SIRT1/ AMPK pathways in the hearts of mice with Alzheimer's disease. Our results showed that folic acid and folinic acid treatment increased survival and SIRT1 expression to reduce apoptotic proteins in the heart. The aging mice treated with folinic acid had more IGF1R and SIRT1/AMPK axes to limit myocardial cell apoptosis. In conclusion, folic acid and folinic acid promote cardiac cell survival and prevent apoptosis to inhibit heart damage in aging mice with triple-transgenic late-stage Alzheimer's disease. In particular, folinic acid provides a better curative effect than folic acid.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"648-659"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Folic Acid and Folinic Acid Protect Hearts of Aging Triple-transgenic Alzheimer's Disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK Pathways.\",\"authors\":\"Da-Tong Ju, Rwei-Fen S Huang, Bruce Chi-Kang Tsai, Yi-Chen Su, Ping-Ling Chiu, Yung-Ming Chang, V Vijaya Padma, Tsung-Jung Ho, Chun-Hsu Yao, Wei-Wen Kuo, Chih-Yang Huang\",\"doi\":\"10.1007/s12640-023-00666-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with Alzheimer's disease have increased risk of developing heart disease, which therefore highlights the need for strategies aiming at reducing Alzheimer's disease-related cardiovascular disease. Folic acid and folinic acid are beneficial to the heart. We aimed to investigate the benefits of folic acid and folinic acid in heart of patients with late-stage Alzheimer's disease. Twelve 16-month-old mice of triple-transgenic late-stage Alzheimer's disease were divided into three groups: Alzheimer's disease group, Alzheimer's disease + folic acid group, and Alzheimer's disease + folinic acid group. The mice were administered 12 mg/kg folic acid or folinic acid once daily via oral gavage for 3 months. In the folic acid and folinic acid treatment groups, the intercellular space was reduced, compared with the Alzheimer's disease group. TUNEL assay and western blot images showed that the number of apoptotic cells and the apoptosis-related protein expression were higher in the Alzheimer's disease group than in other two treated groups. Folic acid and folinic acid induced the IGF1R/PI3K/AKT and SIRT1/ AMPK pathways in the hearts of mice with Alzheimer's disease. Our results showed that folic acid and folinic acid treatment increased survival and SIRT1 expression to reduce apoptotic proteins in the heart. The aging mice treated with folinic acid had more IGF1R and SIRT1/AMPK axes to limit myocardial cell apoptosis. In conclusion, folic acid and folinic acid promote cardiac cell survival and prevent apoptosis to inhibit heart damage in aging mice with triple-transgenic late-stage Alzheimer's disease. In particular, folinic acid provides a better curative effect than folic acid.</p>\",\"PeriodicalId\":19193,\"journal\":{\"name\":\"Neurotoxicity Research\",\"volume\":\" \",\"pages\":\"648-659\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicity Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12640-023-00666-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00666-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

阿尔茨海默病患者患心脏病的风险增加,因此强调需要制定旨在减少阿尔茨海默病相关心血管疾病的策略。叶酸和亚叶酸对心脏有益。我们的目的是研究叶酸和亚叶酸酸对晚期阿尔茨海默病患者心脏的益处。将12只16月龄的三转基因晚期阿尔茨海默病小鼠分为阿尔茨海默病组、阿尔茨海默病+叶酸组和阿尔茨海默病+叶酸组。小鼠每日口服叶酸12 mg/kg或亚叶酸1次,连续灌胃3个月。与阿尔茨海默病组相比,叶酸组和亚叶酸治疗组的细胞间隙减小。TUNEL和western blot结果显示,阿尔茨海默病组的凋亡细胞数量和凋亡相关蛋白表达均高于其他两个治疗组。叶酸和亚叶酸可诱导阿尔茨海默病小鼠心脏IGF1R/PI3K/AKT和SIRT1/ AMPK通路。我们的研究结果表明,叶酸和亚叶酸处理增加了存活率和SIRT1表达,从而减少了心脏中凋亡蛋白的表达。亚叶酸处理的衰老小鼠有更多的IGF1R和SIRT1/AMPK轴来限制心肌细胞凋亡。由此可见,叶酸和亚叶酸酸促进三转基因晚期阿尔茨海默病衰老小鼠心脏细胞存活和防止细胞凋亡,抑制心脏损伤。特别是,亚叶酸比叶酸具有更好的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Folic Acid and Folinic Acid Protect Hearts of Aging Triple-transgenic Alzheimer's Disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK Pathways.

Patients with Alzheimer's disease have increased risk of developing heart disease, which therefore highlights the need for strategies aiming at reducing Alzheimer's disease-related cardiovascular disease. Folic acid and folinic acid are beneficial to the heart. We aimed to investigate the benefits of folic acid and folinic acid in heart of patients with late-stage Alzheimer's disease. Twelve 16-month-old mice of triple-transgenic late-stage Alzheimer's disease were divided into three groups: Alzheimer's disease group, Alzheimer's disease + folic acid group, and Alzheimer's disease + folinic acid group. The mice were administered 12 mg/kg folic acid or folinic acid once daily via oral gavage for 3 months. In the folic acid and folinic acid treatment groups, the intercellular space was reduced, compared with the Alzheimer's disease group. TUNEL assay and western blot images showed that the number of apoptotic cells and the apoptosis-related protein expression were higher in the Alzheimer's disease group than in other two treated groups. Folic acid and folinic acid induced the IGF1R/PI3K/AKT and SIRT1/ AMPK pathways in the hearts of mice with Alzheimer's disease. Our results showed that folic acid and folinic acid treatment increased survival and SIRT1 expression to reduce apoptotic proteins in the heart. The aging mice treated with folinic acid had more IGF1R and SIRT1/AMPK axes to limit myocardial cell apoptosis. In conclusion, folic acid and folinic acid promote cardiac cell survival and prevent apoptosis to inhibit heart damage in aging mice with triple-transgenic late-stage Alzheimer's disease. In particular, folinic acid provides a better curative effect than folic acid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
期刊最新文献
No Benefit of 3% Hypertonic Saline Following Experimental Intracerebral Hemorrhage. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication. The Role of Vitamin C on ATPases Activities in Monosodium Glutamate-Induced Oxidative Stress in Rat Striatum and Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1