动态系统分析的多变量方法:基于广义方差的多变量去趋势波动分析。

IF 2.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Topics in Cognitive Science Pub Date : 2023-09-14 DOI:10.1111/tops.12688
Sebastian Wallot, Julien Patrick Irmer, Monika Tschense, Nikita Kuznetsov, Andreas Højlund, Martin Dietz
{"title":"动态系统分析的多变量方法:基于广义方差的多变量去趋势波动分析。","authors":"Sebastian Wallot,&nbsp;Julien Patrick Irmer,&nbsp;Monika Tschense,&nbsp;Nikita Kuznetsov,&nbsp;Andreas Højlund,&nbsp;Martin Dietz","doi":"10.1111/tops.12688","DOIUrl":null,"url":null,"abstract":"<p><p>Fractal fluctuations are a core concept for inquiries into human behavior and cognition from a dynamic systems perspective. Here, we present a generalized variance method for multivariate detrended fluctuation analysis (mvDFA). The advantage of this extension is that it can be applied to multivariate time series and considers intercorrelation between these time series when estimating fractal properties. First, we briefly describe how fractal fluctuations have advanced a dynamic system understanding of cognition. Then, we describe mvDFA in detail and highlight some of the advantages of the approach for simulated data. Furthermore, we show how mvDFA can be used to investigate empirical multivariate data using electroencephalographic recordings during a time-estimation task. We discuss this methodological development within the framework of interaction-dominant dynamics. Moreover, we outline how the availability of multivariate analyses can inform theoretical developments in the area of dynamic systems in human behavior.</p>","PeriodicalId":47822,"journal":{"name":"Topics in Cognitive Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multivariate Method for Dynamic System Analysis: Multivariate Detrended Fluctuation Analysis Using Generalized Variance.\",\"authors\":\"Sebastian Wallot,&nbsp;Julien Patrick Irmer,&nbsp;Monika Tschense,&nbsp;Nikita Kuznetsov,&nbsp;Andreas Højlund,&nbsp;Martin Dietz\",\"doi\":\"10.1111/tops.12688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fractal fluctuations are a core concept for inquiries into human behavior and cognition from a dynamic systems perspective. Here, we present a generalized variance method for multivariate detrended fluctuation analysis (mvDFA). The advantage of this extension is that it can be applied to multivariate time series and considers intercorrelation between these time series when estimating fractal properties. First, we briefly describe how fractal fluctuations have advanced a dynamic system understanding of cognition. Then, we describe mvDFA in detail and highlight some of the advantages of the approach for simulated data. Furthermore, we show how mvDFA can be used to investigate empirical multivariate data using electroencephalographic recordings during a time-estimation task. We discuss this methodological development within the framework of interaction-dominant dynamics. Moreover, we outline how the availability of multivariate analyses can inform theoretical developments in the area of dynamic systems in human behavior.</p>\",\"PeriodicalId\":47822,\"journal\":{\"name\":\"Topics in Cognitive Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Cognitive Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/tops.12688\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/tops.12688","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

分形波动是从动态系统角度研究人类行为和认知的核心概念。在此,我们提出一种广义方差法用于多元去趋势波动分析(mvDFA)。这种扩展的优点是它可以应用于多变量时间序列,并在估计分形性质时考虑这些时间序列之间的相互关系。首先,我们简要地描述了分形波动如何推动了对认知的动态系统理解。然后,我们详细描述了mvDFA,并强调了该方法在模拟数据方面的一些优点。此外,我们展示了如何使用mvDFA在时间估计任务期间使用脑电图记录来调查经验多元数据。我们在交互主导动力学的框架内讨论这种方法的发展。此外,我们概述了多元分析的可用性如何为人类行为动态系统领域的理论发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multivariate Method for Dynamic System Analysis: Multivariate Detrended Fluctuation Analysis Using Generalized Variance.

Fractal fluctuations are a core concept for inquiries into human behavior and cognition from a dynamic systems perspective. Here, we present a generalized variance method for multivariate detrended fluctuation analysis (mvDFA). The advantage of this extension is that it can be applied to multivariate time series and considers intercorrelation between these time series when estimating fractal properties. First, we briefly describe how fractal fluctuations have advanced a dynamic system understanding of cognition. Then, we describe mvDFA in detail and highlight some of the advantages of the approach for simulated data. Furthermore, we show how mvDFA can be used to investigate empirical multivariate data using electroencephalographic recordings during a time-estimation task. We discuss this methodological development within the framework of interaction-dominant dynamics. Moreover, we outline how the availability of multivariate analyses can inform theoretical developments in the area of dynamic systems in human behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Cognitive Science
Topics in Cognitive Science PSYCHOLOGY, EXPERIMENTAL-
CiteScore
8.50
自引率
10.00%
发文量
52
期刊介绍: Topics in Cognitive Science (topiCS) is an innovative new journal that covers all areas of cognitive science including cognitive modeling, cognitive neuroscience, cognitive anthropology, and cognitive science and philosophy. topiCS aims to provide a forum for: -New communities of researchers- New controversies in established areas- Debates and commentaries- Reflections and integration The publication features multiple scholarly papers dedicated to a single topic. Some of these topics will appear together in one issue, but others may appear across several issues or develop into a regular feature. Controversies or debates started in one issue may be followed up by commentaries in a later issue, etc. However, the format and origin of the topics will vary greatly.
期刊最新文献
Team Cognition Research Is Transforming Cognitive Science. Predictive Processing, Rational Constructivism, and Bayesian Models of Development: Commentary. A Matter of Memory? Age-Invariant Relative Clause Disambiguation and Memory Interference in Older Adults. Personalized Model-Driven Interventions for Decisions From Experience. Social Rationality and Human Reasoning: Logical Expressivism and the Flat Mind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1