F M Vivaldi, S Reale, S Ghimenti, D Biagini, A Lenzi, T Lomonaco, F Di Francesco
{"title":"用于固相吸附工具的低成本内部标准装载机。","authors":"F M Vivaldi, S Reale, S Ghimenti, D Biagini, A Lenzi, T Lomonaco, F Di Francesco","doi":"10.1088/1752-7163/acef4b","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of<sup>8</sup>D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min<sup>-1</sup>and it is lower than 1%, whereas the variability of the IS (<sup>8</sup>D-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the<sup>8</sup>D-Toluene measured by gas chromatography-MS. The<sup>8</sup>D-Toluene concentration in the canister was stable for up to three weeks at room temperature.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-cost internal standard loader for solid-phase sorbing tools.\",\"authors\":\"F M Vivaldi, S Reale, S Ghimenti, D Biagini, A Lenzi, T Lomonaco, F Di Francesco\",\"doi\":\"10.1088/1752-7163/acef4b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of<sup>8</sup>D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min<sup>-1</sup>and it is lower than 1%, whereas the variability of the IS (<sup>8</sup>D-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the<sup>8</sup>D-Toluene measured by gas chromatography-MS. The<sup>8</sup>D-Toluene concentration in the canister was stable for up to three weeks at room temperature.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/acef4b\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acef4b","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
固相吸附法广泛用于气体样品的分析,因为它同时允许对目标分析物进行预浓缩,并将样品储存相对较长的时间。在分析工作流程中加入内部标准(ISs)可以大大减少分析的可变性,提高协议的可靠性。在这项工作中,我们描述了一种便携式系统的开发和测试,该系统用于在1L硅土罐中可靠地生产8d -甲苯的气体混合物,并将其可重复加载到固相吸附工具中作为ISs。便携式系统使用针阱微萃取、固相萃取和薄膜微萃取技术进行了测试,这些技术通常用于分析气体样品。尽管我们对呼气分析感兴趣,但该系统也可用于收集任何种类的气体样本。微控制器允许通过数字质量流量控制器对采样流量进行精细控制。流速和样本量可以通过安装在控制板上的旋转编编器或通过专用的android应用程序进行设置。气流的变异性在5-200 ml min-1范围内,低于1%,而通过选择离子流管质谱(MS)测量的装载机分配的is (8d -甲苯)浓度随时间的变异性是通过气相色谱-MS测量的8d -甲苯。在室温下,罐内的8d -甲苯浓度可稳定达三周。
A low-cost internal standard loader for solid-phase sorbing tools.
Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of8D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min-1and it is lower than 1%, whereas the variability of the IS (8D-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the8D-Toluene measured by gas chromatography-MS. The8D-Toluene concentration in the canister was stable for up to three weeks at room temperature.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.