{"title":"睡眠不足的人Go/Nogo任务相关的神经元振荡的相幅耦合减少。","authors":"Peng Zhang, Chuancai Sun, Zhongqi Liu, Qianxiang Zhou","doi":"10.1093/sleep/zsad243","DOIUrl":null,"url":null,"abstract":"<p><p>Phase-amplitude coupling (PAC) across frequency might be associated with the long-range synchronization of brain networks, facilitating the spatiotemporal integration of multiple cell assemblies for information transmission during inhibitory control. However, sleep problems may affect these cortical information transmissions based on cross-frequency PAC, especially when humans work in environments of social isolation. This study aimed to evaluate changes in the theta-beta/gamma PAC of task-related electroencephalography (EEG) for humans with insufficient sleep. Here, we monitored the EEG signals of 60 healthy volunteers and 18 soldiers in the normal environment, performing a Go/Nogo task. Soldiers also participated in the same test in isolated cabins. These measures demonstrated theta-beta PACs between the frontal and central-parietal, and robust theta-gamma PACs between the frontal and occipital cortex. Unfortunately, these PACs significantly decreased when humans experienced insufficient sleep, which was positively correlated with the behavioral performance of inhibitory control. The evaluation of theta-beta/gamma PAC of Go/Nogo task-related EEG is necessary to help understand the different influences of sleep problems in humans.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-amplitude coupling of Go/Nogo task-related neuronal oscillation decreases for humans with insufficient sleep.\",\"authors\":\"Peng Zhang, Chuancai Sun, Zhongqi Liu, Qianxiang Zhou\",\"doi\":\"10.1093/sleep/zsad243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phase-amplitude coupling (PAC) across frequency might be associated with the long-range synchronization of brain networks, facilitating the spatiotemporal integration of multiple cell assemblies for information transmission during inhibitory control. However, sleep problems may affect these cortical information transmissions based on cross-frequency PAC, especially when humans work in environments of social isolation. This study aimed to evaluate changes in the theta-beta/gamma PAC of task-related electroencephalography (EEG) for humans with insufficient sleep. Here, we monitored the EEG signals of 60 healthy volunteers and 18 soldiers in the normal environment, performing a Go/Nogo task. Soldiers also participated in the same test in isolated cabins. These measures demonstrated theta-beta PACs between the frontal and central-parietal, and robust theta-gamma PACs between the frontal and occipital cortex. Unfortunately, these PACs significantly decreased when humans experienced insufficient sleep, which was positively correlated with the behavioral performance of inhibitory control. The evaluation of theta-beta/gamma PAC of Go/Nogo task-related EEG is necessary to help understand the different influences of sleep problems in humans.</p>\",\"PeriodicalId\":49514,\"journal\":{\"name\":\"Sleep\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/sleep/zsad243\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Phase-amplitude coupling of Go/Nogo task-related neuronal oscillation decreases for humans with insufficient sleep.
Phase-amplitude coupling (PAC) across frequency might be associated with the long-range synchronization of brain networks, facilitating the spatiotemporal integration of multiple cell assemblies for information transmission during inhibitory control. However, sleep problems may affect these cortical information transmissions based on cross-frequency PAC, especially when humans work in environments of social isolation. This study aimed to evaluate changes in the theta-beta/gamma PAC of task-related electroencephalography (EEG) for humans with insufficient sleep. Here, we monitored the EEG signals of 60 healthy volunteers and 18 soldiers in the normal environment, performing a Go/Nogo task. Soldiers also participated in the same test in isolated cabins. These measures demonstrated theta-beta PACs between the frontal and central-parietal, and robust theta-gamma PACs between the frontal and occipital cortex. Unfortunately, these PACs significantly decreased when humans experienced insufficient sleep, which was positively correlated with the behavioral performance of inhibitory control. The evaluation of theta-beta/gamma PAC of Go/Nogo task-related EEG is necessary to help understand the different influences of sleep problems in humans.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.