Pingping Han, Kexin Jiao, Corey S Moran, Andrew Liaw, Yinghong Zhou, Carlos Salomon, Saso Ivanovski
{"title":"牙周炎患者唾液细胞外小泡TNF-α和OSX mRNA的初步研究","authors":"Pingping Han, Kexin Jiao, Corey S Moran, Andrew Liaw, Yinghong Zhou, Carlos Salomon, Saso Ivanovski","doi":"10.1089/ten.TEC.2023.0051","DOIUrl":null,"url":null,"abstract":"<p><p>This cross-sectional pilot study explored extracellular vesicle (EV)-derived gene expression of markers for bone turnover and pro-inflammatory cytokines in periodontal disease. Whole unstimulated saliva was collected from 52 participants (18 healthy, 13 gingivitis, and 21 stages III/IV periodontitis), from which salivary small extracellular vesicles (sEVs) were enriched using the size-exclusion chromatography method, and characterized by morphology, EV-protein, and size distribution, using transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), and Nanoparticle Tracking Analysis (NTA), respectively. Bone turnover markers and pro-inflammatory cytokines in salivary sEVs were evaluated using reverse transcription PCR. Salivary sEVs morphology, mode, size distribution, and particle concentration were comparable between healthy, gingivitis, and periodontitis patients. The CD9+ subpopulation was significantly higher in periodontitis-derived salivary sEVs compared with healthy. The detection of sEVs mRNA for <i>osterix</i> and <i>tumor necrosis factor-alpha</i> was significantly decreased and increased, respectively, in periodontitis compared with healthy controls, with good discriminatory power for periodontitis diagnosis (area under the curve >0.72). This pilot study demonstrated that salivary sEVs mRNAs may serve as a potential noninvasive biomarker source for periodontitis diagnosis.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 7","pages":"298-306"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>TNF-α and OSX</i> mRNA of Salivary Small Extracellular Vesicles in Periodontitis: A Pilot Study.\",\"authors\":\"Pingping Han, Kexin Jiao, Corey S Moran, Andrew Liaw, Yinghong Zhou, Carlos Salomon, Saso Ivanovski\",\"doi\":\"10.1089/ten.TEC.2023.0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This cross-sectional pilot study explored extracellular vesicle (EV)-derived gene expression of markers for bone turnover and pro-inflammatory cytokines in periodontal disease. Whole unstimulated saliva was collected from 52 participants (18 healthy, 13 gingivitis, and 21 stages III/IV periodontitis), from which salivary small extracellular vesicles (sEVs) were enriched using the size-exclusion chromatography method, and characterized by morphology, EV-protein, and size distribution, using transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), and Nanoparticle Tracking Analysis (NTA), respectively. Bone turnover markers and pro-inflammatory cytokines in salivary sEVs were evaluated using reverse transcription PCR. Salivary sEVs morphology, mode, size distribution, and particle concentration were comparable between healthy, gingivitis, and periodontitis patients. The CD9+ subpopulation was significantly higher in periodontitis-derived salivary sEVs compared with healthy. The detection of sEVs mRNA for <i>osterix</i> and <i>tumor necrosis factor-alpha</i> was significantly decreased and increased, respectively, in periodontitis compared with healthy controls, with good discriminatory power for periodontitis diagnosis (area under the curve >0.72). This pilot study demonstrated that salivary sEVs mRNAs may serve as a potential noninvasive biomarker source for periodontitis diagnosis.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"29 7\",\"pages\":\"298-306\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2023.0051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
TNF-α and OSX mRNA of Salivary Small Extracellular Vesicles in Periodontitis: A Pilot Study.
This cross-sectional pilot study explored extracellular vesicle (EV)-derived gene expression of markers for bone turnover and pro-inflammatory cytokines in periodontal disease. Whole unstimulated saliva was collected from 52 participants (18 healthy, 13 gingivitis, and 21 stages III/IV periodontitis), from which salivary small extracellular vesicles (sEVs) were enriched using the size-exclusion chromatography method, and characterized by morphology, EV-protein, and size distribution, using transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), and Nanoparticle Tracking Analysis (NTA), respectively. Bone turnover markers and pro-inflammatory cytokines in salivary sEVs were evaluated using reverse transcription PCR. Salivary sEVs morphology, mode, size distribution, and particle concentration were comparable between healthy, gingivitis, and periodontitis patients. The CD9+ subpopulation was significantly higher in periodontitis-derived salivary sEVs compared with healthy. The detection of sEVs mRNA for osterix and tumor necrosis factor-alpha was significantly decreased and increased, respectively, in periodontitis compared with healthy controls, with good discriminatory power for periodontitis diagnosis (area under the curve >0.72). This pilot study demonstrated that salivary sEVs mRNAs may serve as a potential noninvasive biomarker source for periodontitis diagnosis.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.