Rajarshi Pal Chowdhury , Luke A. Stegeman , Matthew L. Lund , Dan Fry , Stojan Madzunkov , Amir A. Bahadori
{"title":"深空辐射屏蔽的混合方法","authors":"Rajarshi Pal Chowdhury , Luke A. Stegeman , Matthew L. Lund , Dan Fry , Stojan Madzunkov , Amir A. Bahadori","doi":"10.1016/j.lssr.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, NASA and other space exploration organizations have focused on making crewed missions to different locations in our solar system a priority. To ensure the crew members’ safety in a harsh radiation environment outside the protection of the geomagnetic field and atmosphere, a robust radiation protection system needs to be in place. Passive shielding methods, which use mass shielding, are insufficient as a standalone means of radiation protection for long-term deep-space missions. Active shielding methods, which use electromagnetic fields to deflect charged particles, have the potential to be a solution that can be used along with passive shielding to make deep-space travel safer and more feasible. Past active shielding studies have demonstrated that substantial technological advances are required for active shielding to be a reality. However, active shielding has shown potential for near-future implementation when used to protect against solar energetic particles, which are less penetrating than galactic cosmic rays (GCRs). This study uses a novel approach to investigate the impacts of passive and active shielding for protection against extreme solar particle events (SPEs) and free-space GCR spectra under solar minimum and solar maximum conditions. Hybrid shielding configuration performance is assessed in terms of effective dose and radiobiological effectiveness (RBE)-weighted dose reduction. A novel electrostatic shielding configuration consisting of multiple charged planes and charged rods was chosen as the base active shielding configuration. After a rigorous optimization process, two hybrid shielding configurations were chosen based on their ability to reduce RBE-weighted dose and effective dose. For protection against the extreme SPE, a hybrid active-passive shielding configuration was chosen, where active shielding was placed outside of passive shielding. In the case of GCRs, to gain additional reduction compared to passive shielding, the passive shielding configuration was placed before the active shielding to intentionally fragment HZE ions to improve shielding performance.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid methods of radiation shielding against deep-space radiation\",\"authors\":\"Rajarshi Pal Chowdhury , Luke A. Stegeman , Matthew L. Lund , Dan Fry , Stojan Madzunkov , Amir A. Bahadori\",\"doi\":\"10.1016/j.lssr.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, NASA and other space exploration organizations have focused on making crewed missions to different locations in our solar system a priority. To ensure the crew members’ safety in a harsh radiation environment outside the protection of the geomagnetic field and atmosphere, a robust radiation protection system needs to be in place. Passive shielding methods, which use mass shielding, are insufficient as a standalone means of radiation protection for long-term deep-space missions. Active shielding methods, which use electromagnetic fields to deflect charged particles, have the potential to be a solution that can be used along with passive shielding to make deep-space travel safer and more feasible. Past active shielding studies have demonstrated that substantial technological advances are required for active shielding to be a reality. However, active shielding has shown potential for near-future implementation when used to protect against solar energetic particles, which are less penetrating than galactic cosmic rays (GCRs). This study uses a novel approach to investigate the impacts of passive and active shielding for protection against extreme solar particle events (SPEs) and free-space GCR spectra under solar minimum and solar maximum conditions. Hybrid shielding configuration performance is assessed in terms of effective dose and radiobiological effectiveness (RBE)-weighted dose reduction. A novel electrostatic shielding configuration consisting of multiple charged planes and charged rods was chosen as the base active shielding configuration. After a rigorous optimization process, two hybrid shielding configurations were chosen based on their ability to reduce RBE-weighted dose and effective dose. For protection against the extreme SPE, a hybrid active-passive shielding configuration was chosen, where active shielding was placed outside of passive shielding. In the case of GCRs, to gain additional reduction compared to passive shielding, the passive shielding configuration was placed before the active shielding to intentionally fragment HZE ions to improve shielding performance.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552423000391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552423000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hybrid methods of radiation shielding against deep-space radiation
In the last decade, NASA and other space exploration organizations have focused on making crewed missions to different locations in our solar system a priority. To ensure the crew members’ safety in a harsh radiation environment outside the protection of the geomagnetic field and atmosphere, a robust radiation protection system needs to be in place. Passive shielding methods, which use mass shielding, are insufficient as a standalone means of radiation protection for long-term deep-space missions. Active shielding methods, which use electromagnetic fields to deflect charged particles, have the potential to be a solution that can be used along with passive shielding to make deep-space travel safer and more feasible. Past active shielding studies have demonstrated that substantial technological advances are required for active shielding to be a reality. However, active shielding has shown potential for near-future implementation when used to protect against solar energetic particles, which are less penetrating than galactic cosmic rays (GCRs). This study uses a novel approach to investigate the impacts of passive and active shielding for protection against extreme solar particle events (SPEs) and free-space GCR spectra under solar minimum and solar maximum conditions. Hybrid shielding configuration performance is assessed in terms of effective dose and radiobiological effectiveness (RBE)-weighted dose reduction. A novel electrostatic shielding configuration consisting of multiple charged planes and charged rods was chosen as the base active shielding configuration. After a rigorous optimization process, two hybrid shielding configurations were chosen based on their ability to reduce RBE-weighted dose and effective dose. For protection against the extreme SPE, a hybrid active-passive shielding configuration was chosen, where active shielding was placed outside of passive shielding. In the case of GCRs, to gain additional reduction compared to passive shielding, the passive shielding configuration was placed before the active shielding to intentionally fragment HZE ions to improve shielding performance.