基于磁晶体结构的磁对称运算搜索与磁空间群识别算法。

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta Crystallographica Section A: Foundations and Advances Pub Date : 2023-09-01 DOI:10.1107/S2053273323005016
Kohei Shinohara, Atsushi Togo, Isao Tanaka
{"title":"基于磁晶体结构的磁对称运算搜索与磁空间群识别算法。","authors":"Kohei Shinohara,&nbsp;Atsushi Togo,&nbsp;Isao Tanaka","doi":"10.1107/S2053273323005016","DOIUrl":null,"url":null,"abstract":"<p><p>A crystal symmetry search is crucial for computational crystallography and materials science. Although algorithms and implementations for the crystal symmetry search have been developed, their extension to magnetic space groups (MSGs) remains limited. In this paper, algorithms for determining magnetic symmetry operations of magnetic crystal structures, identifying magnetic space-group types of given MSGs, searching for transformations to a Belov-Neronova-Smirnova (BNS) setting, and symmetrizing the magnetic crystal structures using the MSGs are presented. The determination of magnetic symmetry operations is numerically stable and is implemented with minimal modifications from the existing crystal symmetry search. Magnetic space-group types and transformations to the BNS setting are identified by a two-step approach combining space-group-type identification and the use of affine normalizers. Point coordinates and magnetic moments of the magnetic crystal structures are symmetrized by projection operators for the MSGs. An implementation is distributed with a permissive free software license in spglib v2.0.2: https://github.com/spglib/spglib.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"79 Pt 5","pages":"390-398"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Algorithms for magnetic symmetry operation search and identification of magnetic space group from magnetic crystal structure.\",\"authors\":\"Kohei Shinohara,&nbsp;Atsushi Togo,&nbsp;Isao Tanaka\",\"doi\":\"10.1107/S2053273323005016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A crystal symmetry search is crucial for computational crystallography and materials science. Although algorithms and implementations for the crystal symmetry search have been developed, their extension to magnetic space groups (MSGs) remains limited. In this paper, algorithms for determining magnetic symmetry operations of magnetic crystal structures, identifying magnetic space-group types of given MSGs, searching for transformations to a Belov-Neronova-Smirnova (BNS) setting, and symmetrizing the magnetic crystal structures using the MSGs are presented. The determination of magnetic symmetry operations is numerically stable and is implemented with minimal modifications from the existing crystal symmetry search. Magnetic space-group types and transformations to the BNS setting are identified by a two-step approach combining space-group-type identification and the use of affine normalizers. Point coordinates and magnetic moments of the magnetic crystal structures are symmetrized by projection operators for the MSGs. An implementation is distributed with a permissive free software license in spglib v2.0.2: https://github.com/spglib/spglib.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\"79 Pt 5\",\"pages\":\"390-398\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273323005016\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273323005016","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体对称搜索对于计算晶体学和材料科学是至关重要的。虽然晶体对称搜索的算法和实现已经开发出来,但它们在磁空间群(msg)上的扩展仍然有限。本文给出了确定磁晶体结构的磁对称操作、确定给定磁晶体的磁空间群类型、搜索到Belov-Neronova-Smirnova (BNS)设置的变换以及利用磁晶体结构实现磁晶体结构对称的算法。磁对称运算的确定在数值上是稳定的,并且对现有的晶体对称搜索进行了最小的修改。磁空间群类型和对BNS设置的变换通过结合空间群类型识别和使用仿射归一化的两步方法进行识别。用投影算子对磁晶体结构的点坐标和磁矩进行对称。实现是在spglib v2.0.2: https://github.com/spglib/spglib中与宽松的自由软件许可证一起发布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for magnetic symmetry operation search and identification of magnetic space group from magnetic crystal structure.

A crystal symmetry search is crucial for computational crystallography and materials science. Although algorithms and implementations for the crystal symmetry search have been developed, their extension to magnetic space groups (MSGs) remains limited. In this paper, algorithms for determining magnetic symmetry operations of magnetic crystal structures, identifying magnetic space-group types of given MSGs, searching for transformations to a Belov-Neronova-Smirnova (BNS) setting, and symmetrizing the magnetic crystal structures using the MSGs are presented. The determination of magnetic symmetry operations is numerically stable and is implemented with minimal modifications from the existing crystal symmetry search. Magnetic space-group types and transformations to the BNS setting are identified by a two-step approach combining space-group-type identification and the use of affine normalizers. Point coordinates and magnetic moments of the magnetic crystal structures are symmetrized by projection operators for the MSGs. An implementation is distributed with a permissive free software license in spglib v2.0.2: https://github.com/spglib/spglib.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
期刊最新文献
Complete classification of six-dimensional iso-edge domains. The general equation of δ direct methods and the novel SMAR algorithm residuals using the absolute value of ρ and the zero conversion of negative ripples. Periodic graphs with coincident edges: folding-ladder and related graphs. Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1