Craig R. McClain, Corie M. Boolukos, S. River D. Bryant, Granger Hanks
{"title":"深海中沉没的树木连接着陆地和海洋生物多样性。","authors":"Craig R. McClain, Corie M. Boolukos, S. River D. Bryant, Granger Hanks","doi":"10.1002/ecy.4168","DOIUrl":null,"url":null,"abstract":"<p>Wood in the deep sea serves as a substantial food source in an otherwise barren environment, forming specialized, endemic, and diverse community assemblages. This biodiversity reliance on a terrestrial source creates a linkage by which anthropogenic impacts on land can alter the deep oceans. Knowledge of the alpha- or beta-diversity of entire wood-fall communities, and wooden drivers of each would elucidate the terrestrial and deep-sea linkage. We report on a multifactorial experiment in the deep ocean in which alpha- and beta-diversity of 43 wood falls and 11 tree species are quantified over time, wood density, and wood size. We tested multiple hypotheses seeking to link how biodiversity on land may impact the biodiversity in the deep oceans. A tremendous biodiversity occurred among these wood falls in the deep Gulf of Mexico; 114 invertebrate species from 10 phyla. Time, wood hardness, and wood size all impacted various components of community structure. In many cases, these effects were additive. Species occurring on softwoods versus hardwoods and small versus large wood falls were compositionally different. Although various processes can control community structure, this experiment suggests a strong influence of environmental filtering and host specificity of wood-fall invertebrates suggesting an intimate coupling to tree biodiversity and biomass on land.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"104 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sunken trees in the deep sea link terrestrial and marine biodiversity\",\"authors\":\"Craig R. McClain, Corie M. Boolukos, S. River D. Bryant, Granger Hanks\",\"doi\":\"10.1002/ecy.4168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wood in the deep sea serves as a substantial food source in an otherwise barren environment, forming specialized, endemic, and diverse community assemblages. This biodiversity reliance on a terrestrial source creates a linkage by which anthropogenic impacts on land can alter the deep oceans. Knowledge of the alpha- or beta-diversity of entire wood-fall communities, and wooden drivers of each would elucidate the terrestrial and deep-sea linkage. We report on a multifactorial experiment in the deep ocean in which alpha- and beta-diversity of 43 wood falls and 11 tree species are quantified over time, wood density, and wood size. We tested multiple hypotheses seeking to link how biodiversity on land may impact the biodiversity in the deep oceans. A tremendous biodiversity occurred among these wood falls in the deep Gulf of Mexico; 114 invertebrate species from 10 phyla. Time, wood hardness, and wood size all impacted various components of community structure. In many cases, these effects were additive. Species occurring on softwoods versus hardwoods and small versus large wood falls were compositionally different. Although various processes can control community structure, this experiment suggests a strong influence of environmental filtering and host specificity of wood-fall invertebrates suggesting an intimate coupling to tree biodiversity and biomass on land.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"104 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4168\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4168","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Sunken trees in the deep sea link terrestrial and marine biodiversity
Wood in the deep sea serves as a substantial food source in an otherwise barren environment, forming specialized, endemic, and diverse community assemblages. This biodiversity reliance on a terrestrial source creates a linkage by which anthropogenic impacts on land can alter the deep oceans. Knowledge of the alpha- or beta-diversity of entire wood-fall communities, and wooden drivers of each would elucidate the terrestrial and deep-sea linkage. We report on a multifactorial experiment in the deep ocean in which alpha- and beta-diversity of 43 wood falls and 11 tree species are quantified over time, wood density, and wood size. We tested multiple hypotheses seeking to link how biodiversity on land may impact the biodiversity in the deep oceans. A tremendous biodiversity occurred among these wood falls in the deep Gulf of Mexico; 114 invertebrate species from 10 phyla. Time, wood hardness, and wood size all impacted various components of community structure. In many cases, these effects were additive. Species occurring on softwoods versus hardwoods and small versus large wood falls were compositionally different. Although various processes can control community structure, this experiment suggests a strong influence of environmental filtering and host specificity of wood-fall invertebrates suggesting an intimate coupling to tree biodiversity and biomass on land.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.