{"title":"(公平地)预测家庭暴力和警察风险评估。","authors":"Emily Turner, Gavin Brown, Juanjo Medina-Ariza","doi":"10.5093/pi2022a11","DOIUrl":null,"url":null,"abstract":"<p><p>Domestic abuse victim risk assessment is crucial for providing victims with the correct level of support. However, it has been shown that the approach currently taken by most UK police forces, the Domestic Abuse, Stalking, and Honour Based Violence (DASH) risk assessment, is not identifying the most vulnerable victims. Instead, we tested several machine learning algorithms and propose a predictive model, using logistic regression with elastic net as the best performing, that incorporates information readily available in police databases, and census-area-level statistics. We used data from a large UK police force including 350,000 domestic abuse incidents. Our models made significant improvement upon the predictive capacity of DASH, both for intimate partner violence (IPV; AUC = .748) and other forms of domestic abuse (non-IPV; AUC = .763). The most influential variables in the model were of the categories criminal history and domestic abuse history, particularly time since the last incident. We show that the DASH questions contributed almost nothing to the predictive performance. We also provide an overview of model fairness performance for ethnic and socioeconomic subgroups of the data sample. Although there were disparities between ethnic and demographic subgroups, everyone benefited from the increased accuracy of model-based predictions when compared with officer risk predictions.</p>","PeriodicalId":51641,"journal":{"name":"Psychosocial Intervention","volume":"31 3","pages":"145-157"},"PeriodicalIF":3.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/03/88/1132-0559-pi-31-3-0145.PMC10268549.pdf","citationCount":"4","resultStr":"{\"title\":\"Predicting Domestic Abuse (Fairly) and Police Risk Assessment.\",\"authors\":\"Emily Turner, Gavin Brown, Juanjo Medina-Ariza\",\"doi\":\"10.5093/pi2022a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Domestic abuse victim risk assessment is crucial for providing victims with the correct level of support. However, it has been shown that the approach currently taken by most UK police forces, the Domestic Abuse, Stalking, and Honour Based Violence (DASH) risk assessment, is not identifying the most vulnerable victims. Instead, we tested several machine learning algorithms and propose a predictive model, using logistic regression with elastic net as the best performing, that incorporates information readily available in police databases, and census-area-level statistics. We used data from a large UK police force including 350,000 domestic abuse incidents. Our models made significant improvement upon the predictive capacity of DASH, both for intimate partner violence (IPV; AUC = .748) and other forms of domestic abuse (non-IPV; AUC = .763). The most influential variables in the model were of the categories criminal history and domestic abuse history, particularly time since the last incident. We show that the DASH questions contributed almost nothing to the predictive performance. We also provide an overview of model fairness performance for ethnic and socioeconomic subgroups of the data sample. Although there were disparities between ethnic and demographic subgroups, everyone benefited from the increased accuracy of model-based predictions when compared with officer risk predictions.</p>\",\"PeriodicalId\":51641,\"journal\":{\"name\":\"Psychosocial Intervention\",\"volume\":\"31 3\",\"pages\":\"145-157\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/03/88/1132-0559-pi-31-3-0145.PMC10268549.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychosocial Intervention\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.5093/pi2022a11\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychosocial Intervention","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.5093/pi2022a11","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting Domestic Abuse (Fairly) and Police Risk Assessment.
Domestic abuse victim risk assessment is crucial for providing victims with the correct level of support. However, it has been shown that the approach currently taken by most UK police forces, the Domestic Abuse, Stalking, and Honour Based Violence (DASH) risk assessment, is not identifying the most vulnerable victims. Instead, we tested several machine learning algorithms and propose a predictive model, using logistic regression with elastic net as the best performing, that incorporates information readily available in police databases, and census-area-level statistics. We used data from a large UK police force including 350,000 domestic abuse incidents. Our models made significant improvement upon the predictive capacity of DASH, both for intimate partner violence (IPV; AUC = .748) and other forms of domestic abuse (non-IPV; AUC = .763). The most influential variables in the model were of the categories criminal history and domestic abuse history, particularly time since the last incident. We show that the DASH questions contributed almost nothing to the predictive performance. We also provide an overview of model fairness performance for ethnic and socioeconomic subgroups of the data sample. Although there were disparities between ethnic and demographic subgroups, everyone benefited from the increased accuracy of model-based predictions when compared with officer risk predictions.
期刊介绍:
Psychosocial Intervention is a peer-reviewed journal that publishes papers in all areas relevant to psychosocial intervention at the individual, family, social networks, organization, community, and population levels. The Journal emphasizes an evidence-based perspective and welcomes papers reporting original basic and applied research, program evaluation, and intervention results. The journal will also feature integrative reviews, and specialized papers on theoretical advances and methodological issues. Psychosocial Intervention is committed to advance knowledge, and to provide scientific evidence informing psychosocial interventions tackling social and community problems, and promoting social welfare and quality of life. Psychosocial Intervention welcomes contributions from all areas of psychology and allied disciplines, such as sociology, social work, social epidemiology, and public health. Psychosocial Intervention aims to be international in scope, and will publish papers both in Spanish and English.