Nevien Hendawy, Tala H Salaheldin, Sally A Abuelezz
{"title":"PCSK9抑制降低CUMS暴露大鼠的抑郁样行为:HMGB1/RAGE/TLR4通路、NLRP3炎症复合物和IDO-1的亮点。","authors":"Nevien Hendawy, Tala H Salaheldin, Sally A Abuelezz","doi":"10.1007/s11481-023-10060-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ample evidence has pointed to a close link between cardiovascular diseases (CVD) and depression. Inflammatory pathways including the high-mobility-group-box-1 protein, receptor-for-advanced-glycation-end-products and toll-like-receptor-4 (HMGB1/RAGE/TLR4) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome pathways are thought to be crucial players in this link. Activation of these pathways ends by releasing of different inflammatory mediators involved in CVD and depression pathophysiology. In the brain, this inflammatory process enhanced indoleamine2,3-dioxygenase-1 (IDO-1) activation with subsequent alteration in kynurenine/tryptophan levels causing depression. Based on the favorable anti-inflammatory effects of Alirocumab, the proprotein-convertase-subtilisin/kexin-type-9 (PCSK9) inhibitor, used in different CVD, this study was designed to investigate its potential antidepressant effect. The behavioral and neurochemical effects of concomitant treatment of Alirocumab at doses of (4, 8 and 16 mg/kg/week subcutaneously) in Wistar rats exposed to chronic unpredictable mild stress (CUMS) for 6 weeks were assayed. Alirocumab prevented CUMS-induced depressive-like-behaviors exhibited in open-field and forced-swimming tests, and hypothalamus-pituitary-adrenal axis hyperactivity (adrenal gland weight and serum corticosterone). Alirocumab prevented CUMS-induced alteration in hippocampal kynurenine/tryptophan levels and pro-inflammatory cytokines tumor-necrosis-factor-alpha, interleukin-1beta (IL-1β), IL-2 and IL-6. Western blot and PCR analysis showed that Alirocumab favorably modulated the HMGB1/RAGE/TLR4 axis, nuclear-factor-kappa-beta, NLRP3 inflammasome complex and IDO-1 in the hippocampus of CUMS rats. These effects were correlated to the level of PCSK9 expression. The behavioral and biochemical findings indicated the potential antidepressant effect of PCSK9 inhibition by Alirocumab.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"18 1-2","pages":"195-207"},"PeriodicalIF":6.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485135/pdf/","citationCount":"0","resultStr":"{\"title\":\"PCSK9 Inhibition Reduces Depressive like Behavior in CUMS-Exposed Rats: Highlights on HMGB1/RAGE/TLR4 Pathway, NLRP3 Inflammasome Complex and IDO-1.\",\"authors\":\"Nevien Hendawy, Tala H Salaheldin, Sally A Abuelezz\",\"doi\":\"10.1007/s11481-023-10060-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ample evidence has pointed to a close link between cardiovascular diseases (CVD) and depression. Inflammatory pathways including the high-mobility-group-box-1 protein, receptor-for-advanced-glycation-end-products and toll-like-receptor-4 (HMGB1/RAGE/TLR4) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome pathways are thought to be crucial players in this link. Activation of these pathways ends by releasing of different inflammatory mediators involved in CVD and depression pathophysiology. In the brain, this inflammatory process enhanced indoleamine2,3-dioxygenase-1 (IDO-1) activation with subsequent alteration in kynurenine/tryptophan levels causing depression. Based on the favorable anti-inflammatory effects of Alirocumab, the proprotein-convertase-subtilisin/kexin-type-9 (PCSK9) inhibitor, used in different CVD, this study was designed to investigate its potential antidepressant effect. The behavioral and neurochemical effects of concomitant treatment of Alirocumab at doses of (4, 8 and 16 mg/kg/week subcutaneously) in Wistar rats exposed to chronic unpredictable mild stress (CUMS) for 6 weeks were assayed. Alirocumab prevented CUMS-induced depressive-like-behaviors exhibited in open-field and forced-swimming tests, and hypothalamus-pituitary-adrenal axis hyperactivity (adrenal gland weight and serum corticosterone). Alirocumab prevented CUMS-induced alteration in hippocampal kynurenine/tryptophan levels and pro-inflammatory cytokines tumor-necrosis-factor-alpha, interleukin-1beta (IL-1β), IL-2 and IL-6. Western blot and PCR analysis showed that Alirocumab favorably modulated the HMGB1/RAGE/TLR4 axis, nuclear-factor-kappa-beta, NLRP3 inflammasome complex and IDO-1 in the hippocampus of CUMS rats. These effects were correlated to the level of PCSK9 expression. The behavioral and biochemical findings indicated the potential antidepressant effect of PCSK9 inhibition by Alirocumab.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"18 1-2\",\"pages\":\"195-207\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-023-10060-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-023-10060-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
PCSK9 Inhibition Reduces Depressive like Behavior in CUMS-Exposed Rats: Highlights on HMGB1/RAGE/TLR4 Pathway, NLRP3 Inflammasome Complex and IDO-1.
Ample evidence has pointed to a close link between cardiovascular diseases (CVD) and depression. Inflammatory pathways including the high-mobility-group-box-1 protein, receptor-for-advanced-glycation-end-products and toll-like-receptor-4 (HMGB1/RAGE/TLR4) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome pathways are thought to be crucial players in this link. Activation of these pathways ends by releasing of different inflammatory mediators involved in CVD and depression pathophysiology. In the brain, this inflammatory process enhanced indoleamine2,3-dioxygenase-1 (IDO-1) activation with subsequent alteration in kynurenine/tryptophan levels causing depression. Based on the favorable anti-inflammatory effects of Alirocumab, the proprotein-convertase-subtilisin/kexin-type-9 (PCSK9) inhibitor, used in different CVD, this study was designed to investigate its potential antidepressant effect. The behavioral and neurochemical effects of concomitant treatment of Alirocumab at doses of (4, 8 and 16 mg/kg/week subcutaneously) in Wistar rats exposed to chronic unpredictable mild stress (CUMS) for 6 weeks were assayed. Alirocumab prevented CUMS-induced depressive-like-behaviors exhibited in open-field and forced-swimming tests, and hypothalamus-pituitary-adrenal axis hyperactivity (adrenal gland weight and serum corticosterone). Alirocumab prevented CUMS-induced alteration in hippocampal kynurenine/tryptophan levels and pro-inflammatory cytokines tumor-necrosis-factor-alpha, interleukin-1beta (IL-1β), IL-2 and IL-6. Western blot and PCR analysis showed that Alirocumab favorably modulated the HMGB1/RAGE/TLR4 axis, nuclear-factor-kappa-beta, NLRP3 inflammasome complex and IDO-1 in the hippocampus of CUMS rats. These effects were correlated to the level of PCSK9 expression. The behavioral and biochemical findings indicated the potential antidepressant effect of PCSK9 inhibition by Alirocumab.